1.一已二次函数f(x)=ax²+bx+a的对称轴为x=7/4且方程f(x)=7x+a有两个相等的实数根.(1).求f(x)的解析式(2).求函数f(x)在[1,3]上的值域2.设x,y是关于m的方程的m²-2am+a+6=0的实根,求(x-1)²+(y-1)²的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 10:59:05

1.一已二次函数f(x)=ax²+bx+a的对称轴为x=7/4且方程f(x)=7x+a有两个相等的实数根.(1).求f(x)的解析式(2).求函数f(x)在[1,3]上的值域2.设x,y是关于m的方程的m²-2am+a+6=0的实根,求(x-1)²+(y-1)²的
1.一已二次函数f(x)=ax²+bx+a的对称轴为x=7/4且方程f(x)=7x+a有两个相等的实数根.
(1).求f(x)的解析式
(2).求函数f(x)在[1,3]上的值域
2.设x,y是关于m的方程的m²-2am+a+6=0的实根,求(x-1)²+(y-1)²的最值
3.设函数f(x)=ax²+bx+1(a,b属于R)
(1).若f(1)=0且对任意实数x均有f(x)大于等于0,求a,b的值
(2).在(1)的条件下,当属于[-2,2]时g(x)=f(x)-kx为单调函数,求k的取值范围
4.已知二次函数f(x)=ax²+bx(a,b为常数)满足条件f(5-x)=f(-3且有两等根,求f(x)
5.已知二次函数f(x)二项式系数为a,f(x)大于-2x的解集为(1,3)
(1)若f(x)+6a=0有两等根,求f(x).
(2)求f(x)在[-2,0]上的值域

1.一已二次函数f(x)=ax²+bx+a的对称轴为x=7/4且方程f(x)=7x+a有两个相等的实数根.(1).求f(x)的解析式(2).求函数f(x)在[1,3]上的值域2.设x,y是关于m的方程的m²-2am+a+6=0的实根,求(x-1)²+(y-1)²的
1.一已二次函数f(x)=ax²+bx+a的对称轴为x=7/4且方程f(x)=7x+a有两个相等的实数根.
(1).求f(x)的解析式
(2).求函数f(x)在[1,3]上的值域
函数f(x)=ax^2+bx+c 对称轴为x=7/4,
x=-b/2a=7/4,
f(x)=7x+a=ax^2+bx+c
ax^2+(b-7)x+c-a=0
有两个相等实数根,即:只有一个跟,
a不等于0,所以判别式b^2-4ac=0,且c=0,
(b-7)^2-4a(c-a)=0;
c-a=0;
b=7,a=-2,c=-2
f(x)=-2x^2+7x-2
(2)f(x)=-2(x^2-7/2x)-2=-2(x-7/4)^2+33/8
对称轴是x=7/4,那么在[1,3]上:
最大值是:f(7/4)=33/8,最小值是f(3)=1
即值域是[1,33/8]
2.设x,y是关于m的方程的m²-2am+a+6=0的实根,求(x-1)²+(y-1)²的最值
方程m² -2am+6+a=0有根
Delt=4a²-4(6+a)>=0 a>=3或a=3或a0得解集为 (1,3)可知
a

1.(1)由f(x)=7x+a得,ax^2+bx+a=7x+a,化简得ax^2+(b-7)x=0∵有两个相等的实数根∴b=7∵对称轴为x=7/4∴-2a/b=7/4∴a=-2∴f(x)=-2x^2+7x-2
(2)f(x)=-2(x-7/4)^2+33/8∵a=-2<0,7/4∈[1,3]∴x=7/4时f(x)取得最大值。f(7/4)=33/8.而f(1)=3,f(3)=1∴函数f(x)在...

全部展开

1.(1)由f(x)=7x+a得,ax^2+bx+a=7x+a,化简得ax^2+(b-7)x=0∵有两个相等的实数根∴b=7∵对称轴为x=7/4∴-2a/b=7/4∴a=-2∴f(x)=-2x^2+7x-2
(2)f(x)=-2(x-7/4)^2+33/8∵a=-2<0,7/4∈[1,3]∴x=7/4时f(x)取得最大值。f(7/4)=33/8.而f(1)=3,f(3)=1∴函数f(x)在[1,3]上的值域是[1,33/8]
2.∵x,y是关于方程m^2-2am+a+6=0的实数根
∴x+y=2a,xy=a+6,△=(-2a)^2-4(a+6)>=0∴a>=3或a<=-2
∴(x-1)^2+(y-1)^2=(x+y)^2-2xy-2(x+y)+2=4a^2-6a+10=4(a-3/4)^2+31/4
∵4>0∴开口向上,有最小值。a=3/4不在a的范围内,f(3)=28,f(-2)=38
∴(x-1)^2+(y-1)^2的最小值是28,无最大值。
3.(1)∵f(1)=0∴a+b+1=0∵f(x)对任意实数x均有大于等于0∴△<=0
即b^2-4a=b^2-4(-1-b)=b^2+4b+4=(b+2)^2<=0,而(b+2)^2>=0∴b+2=0,b=-2.
∴a=1
(2)g(x)=f(x)-kx=x^2-2x+1-kx=x^2-(2+k)x+1,二次项系数为1>0,开口向下。
*1,g(x)在[-2,2]单调递增时,(2+k)/2>=2∴k>=2
*2,g(x)在[-2,2]单调递减时,(2+k)/2<=-2∴k<=-6

收起

1.一已二次函数f(x)=ax²+bx+a的对称轴为x=7/4且方程f(x)=7x+a有两个相等的实数根.(1).求f(x)的解析式(2).求函数f(x)在[1,3]上的值域2.设x,y是关于m的方程的m²-2am+a+6=0的实根,求(x-1)²+(y-1)²的 关于二次函数单调区间问题求二次函数f(x)=ax²+bx+c(a 设二次函数f(x)=-x²+2ax+a²满足条件f(2)=f(a),求此函数的最大值? 设二次函数f(x)=-x²+2ax+a².满足条件f(2)=f(a)求次函数最大值 1.若函数f(x)=二次根号下(ax+2)的定义域为(-∞,1],求实数a2.若函数f(x)=二次根号下(ax+2)在(-∞,1]有意义,求实数a3.若函数f(x)=二次根号下(ax²+bx+c)的定义域为[1,3],求函数f(x 求二次函数f(x)=x²-2ax+2在【2,4】上的最大值与最小值 不等式证明```.`..已知二次函数f(x)=ax²+bx+c(a>0,c麻烦写详细点` 高一数学:若已知二次函数f(x)=ax^2+x,且0 1.已知二次函数f(x)=ax²+4ax+a²-1在区间【-4,1】上的最大值为5,求实数a的值.2.已知f(x)=x²+ax+3-a,若-2≤x≤2时,f(x)≥0恒成立,求a的取值范围. 是有关函数的表示法的1.已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.2.已知a,b是常数,若f(x)=x²+4x+3,f(ax+b)=x²+10+24,则5a-b= 是有关函数的表示法的1.已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.2.已知a,b是常数,若f(x)=x²+4x+3,f(ax+b)=x²+10+24,则5a-b= 二次函数y=ax² 已知二次函数F(x)=ax²+BX+c,且对任意的X∈R,2ax+b=F(x+1)+X²恒成立,求F(x)的解析式. 已知二次函数f(x)=ax²-2ax+b,其中a属于(0.4),b属于(0.7),则函数有零点的概率 已知二次函数f{x}=ax²+x+1对x∈[0,2]恒有f{x}大于0,求实数a的范围.. 在二次函数f(x)=ax²+bx+c中,若a,b,c成等比数列,且f(0)=4,求f(x)的最值. 二次函数y=ax²+x+a²-1的图像可能是 设函数f(x)=ax²+bx+c(a