1、已知一个等腰三角形的三边长分别为x、2x、5x-3,求这个三角形的周长.2、某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服1
1、已知一个等腰三角形的三边长分别为x、2x、5x-3,求这个三角形的周长.2、某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服1
1、已知一个等腰三角形的三边长分别为x、2x、5x-3,求这个三角形的周长.
2、某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B形号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不少于28件.
1)求A、B型号衣服进价各是多少元?
2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中有几种方案?并简述购货方式
1、已知一个等腰三角形的三边长分别为x、2x、5x-3,求这个三角形的周长.2、某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服1
1、已知一个等腰三角形的三边长分别为x、2x、5x-3,求这个三角形的周长.
已知等腰三角形
则x=5x-3或2x=5x-3
分别得x=3/4,或x=1
检验:
x=3/4时,三边分别是3/4,3/2,3/4.
x=1时,三边分别是1,2,2.
满足三角形的两边之和大于第三边的定理,推断x=3/4时,此三角形不存在
所以只能满足x=1
所以此三角形的周长是1+2+2=5
2、某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B形号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不少于28件.
1)求A、B型号衣服进价各是多少元?
2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中有几种方案?并简述购货方式
1.设A.B两种型号的服装每件分别x,y元
9x+10y=1810
12x+8y=1880
解得 x=90,y=100
2.设购进A、B型服装的数量分别为x,y件
x=2y+4
x=699
解得 23
1. 5
1. 1)x=5x-3 有x=3/4 则三边长3/4, 6/4 ,6/4 周长15/4
2)2x=5x-3 有x=1 则三边长1,2,2 周长 5
2设A种型号衣服每件x,则B种型号衣服每件为(1810-9x)/10;
代入第二次进货中有:12x+8×(1810-9x)/10=1880
求出x=90 代入(1810-9x)/10求出B种型号衣服每件1...
全部展开
1. 1)x=5x-3 有x=3/4 则三边长3/4, 6/4 ,6/4 周长15/4
2)2x=5x-3 有x=1 则三边长1,2,2 周长 5
2设A种型号衣服每件x,则B种型号衣服每件为(1810-9x)/10;
代入第二次进货中有:12x+8×(1810-9x)/10=1880
求出x=90 代入(1810-9x)/10求出B种型号衣服每件100元
设购进B型号衣服y件,则购进A型衣服2y+4件(2y+4>=28),
30y+18(2y+4)>=699求出 y>=9.5,又2y+4<=28则有y<=12;
所以就是10<=y<=12
当y=12时,购进A型衣服2y+4=28,利润:12×30+28×18>=699,12×100+28×90=3720>1810+1880不满足题意;
当y=11时,购进A型衣服2y+4=26,利润:11×30+26×18>=699,11×100+26×90=3440满足题意;
当y=10时,购进A型衣服2y+4=24,利润:10×30+24×18>=699,10×100+24×90=3160满足题意;
就是后面2种假设满足题意,有2种方案
=========
我觉得题设应该是A型号衣服不多于28件(我就是按照这个假设作的,如果你书写没问题,答案就不是这个了)
收起