如图 已知抛物线的方程为x^2=2py 过点a(0,1)的直线已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:33:52

如图 已知抛物线的方程为x^2=2py 过点a(0,1)的直线已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB
如图 已知抛物线的方程为x^2=2py 过点a(0,1)的直线
已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB的斜率的乘积为-4,则∠MBN的大小为?

如图 已知抛物线的方程为x^2=2py 过点a(0,1)的直线已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB
这种题目高考不会出,奥林匹克也不会考,国家级或者国际级可能会考,不必钻这种题目哦.
以下是奥林匹克高手的解法,方法正确,请检验计算结果.
PQ:y=kx-1
x^2=2py=2p*(kx-1)
x^2-2pkx+2p=0
xP+xQ=2pk,xP*xQ=2p
k(BQ)*k(BP)=-4
[(yQ-1)/xQ]*[(yP-1)/xP]=-4
(kxQ-2)*(kxP-2)+4xP*xQ=0
k^2*xP*xQ-2k*(xP+xQ)+4+4xP*xQ=0
(4+k^2)*xP*xQ-2k*(xP+xQ)+4=0
(4+k^2)*2p-2k*2pk+4=0
k^2=(2+4p)/p
xP-xQ=2√(p^2*k^2-2p)=2√[p^2*(2+4p)/p-2p]=2√(4p^2)=4p(p>0)
k(BQ)-k(BP)=(kxQ-2)/xQ-(kxP-2)/xP=-2(xP-xQ)/(2p)=-4
1+k(BQ)*k(BP)=1+[(kxQ-2)/xQ]*[(kxP-2)/xP]=-3
[k(BQ)-k(BP)]/[1+k(BQ)*k(BP)]=-4/(-3)=4/3
∠MBN=arctg(4/3)

已知抛物线x^2=2py(p>0)的准线与圆x^2+y^2-4y-5=0相切,则抛物线的方程为 如图 已知抛物线的方程为x^2=2py 过点a(0,1)的直线已知抛物线的方程为x2=2py(p>0),过点A(0,-1)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,1),连接BP,BQ,设QB,BP与x轴分别交于点M,N,如果QB的斜率于PB 已知抛物线C:X =2py(p>0)过点A(-2,1),求抛物线C的方程 已知A.B为抛物线x²=2py上的两点.直线AB过焦点F.若向量OA*向量OB=-6.求抛物线方程 已知A.B为抛物线x²=2py的两点.直线AB过焦点F.若向量OA*向量OB=-6.求抛物线方程 已知抛物线C:x2=2py(p>0)上一点M(x,2)到其焦点F的距离为3 (1)求抛物线C的方程?已知抛物线C:x2=2py(p>0)上一点M(m.4)到其焦点的距离为5求抛物线C的方程? 如图,已知直线L:y=kx-2与抛物线C:x^2=-2py(p>0)交于A,B两点,O为坐标原点,OA向量+OB向量=(-4,-12)(1)求直线L和抛物线C的方程;(2)抛物线上一动点P从A到B运动时,求△ABP面积的最大值. 抛物线的参数方程x²=-2py他的参数方程是什么? 高中圆锥曲线题,已知P为抛物线x方=2py(p 已知抛物线x^2=2py,在点(1,1/2p)和(-1,1/2p)处的两条切线互相垂直,求抛物线方程. 在抛物线方程X^2=2py (P>0)P的几何意义是什么 已知抛物线C:x2=2py(p>0)上一点M(m.4)到其焦点的距离为5求抛物线C的方程? 已知抛物线C:x^2=2py,其焦点F到直线x-y-1=0的距离为(5根号2)/8.(1)求抛物线方程. 已知椭圆cx方/4+y方/b方=1的离心率为根号3/2,p抛物线x方=2py的焦点在椭圆c的顶点上,求抛物线方程 已知抛物线C:x^2=2py(p>0)上一点M(m,4)到其焦点的距离为5求抛物线C的方程, 抛物线标准方程x^2=2py如何平移图像?如题如何修改方程达到平移图像的目的? 根据抛物线的定义选取参数,建立抛物线x^2=2py(p>0)的参数方程 根据抛物线的定义选取参数,建立抛物线x^2=2py(p>0)的参数方程