由数列极限定义证明limn→无穷 (n^2-2)/(n^2+n+1)=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:04:14

由数列极限定义证明limn→无穷 (n^2-2)/(n^2+n+1)=1
由数列极限定义证明limn→无穷 (n^2-2)/(n^2+n+1)=1

由数列极限定义证明limn→无穷 (n^2-2)/(n^2+n+1)=1
分子分母同时除以n的平方就可以了

根据极限定义,正确应该做法如下:
要证明极限为1,只需证明|(n^2-2)/(n^2+n+1)-1|<ε即可
则有|(n^2-2)/(n^2+n+1)-1|=(n+3)/(n^2+n+1)<(n+3)/(n^2+n)=n/(n^2+n)+3/(n^2+n)n0,∃1/(n+1)<1/([1/ε]+1])<ε,证完