在同一平面上有三角形ABC及一点O满足关系式:(向量)OA^2+BC^2=OB^2+CA^2=OC^2+AB^2,则O是什么心
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:44:08
在同一平面上有三角形ABC及一点O满足关系式:(向量)OA^2+BC^2=OB^2+CA^2=OC^2+AB^2,则O是什么心
在同一平面上有三角形ABC及一点O满足关系式:(向量)OA^2+BC^2=OB^2+CA^2=OC^2+AB^2,则O是什么心
在同一平面上有三角形ABC及一点O满足关系式:(向量)OA^2+BC^2=OB^2+CA^2=OC^2+AB^2,则O是什么心
垂心
(向量)OA^2+BC^2=OB^2+CA^2
OA^2-OB^2=CA^2-BC^2
(OA+OB)(OA-OB)=(CA+BC)(CA-BC)
(OA+OB)*BA=BA(CA-BC)
BA(OA+OB-CA+BC)=0
BA(2OC)=0
即(BA)(OC)=0
因为BA、OC不为0
所以只有cosa=0
a=90度
即OC垂直BA
同理OA垂直BC
OB垂直AC
所以O为垂心
垂心。
OA^2+BC^2=OB^2+CA^2
<==>(OA-OB)*(OA+OB)+(BC-AC)*(BC+AC)=0
<==>BA*(OA+OB+BC+AC)=0
<==>BA*(OA+AC+OB+BC)=0
<==>2*BA*OC=0
同理,有
AC*OB=0,BC*OA=0
OA
在同一平面上有三角形ABC及一点O满足关系式:(向量)OA^2+BC^2=OB^2+CA^2=OC^2+AB^2,则O是什么心
一道高一数学:在同一平面上有△ABC及一点O满足关系式:OA^2+BC^2=OB^2+CA^2=OC^2+AB^2,这O为△ABC的:有四个选项~A 外心 B垂心 C重心 D内心 注意了^2是平方的意思 关系式里的字母都是向量谢谢大
平面内三角形ABC及一点O满足OA·OB=OB·OC=OC·OA(都是向量),则点O是三角形ABC的___心?请尽量详细一点,
已知三角形ABC的三个顶点A B C及平面内一点P满足向量PA+向量PB=向量PC则下列结论中正确的是A P在三角形ABC的内部 B P在三角形ABC的边AB上 C P在AB边所在的直线上 D P在三角形ABC的外部
几个有关平面向量的问题1.已知三角形ABC的三个顶点A,B,C及平面内一点P满足(向量PA)+(向量PB)=(向量PC),下列结论中正确的是( )A.P在三角形ABC的内部 B.P在三角形ABC的边AB上 C.P在AB边所在直线上 D.P
数学平面向量已知三角形ABC的三个顶点A,B,C及同一平面内一点P满足向量PA+向量PB=向量PC,下列结论中正确的是:
P是三角形ABC外一点,O是P在平面上的射影,PA,PB,PC两两垂直,则O是ABC垂心,怎么证
设p是等边三角形ABC所在平面上一点,使三角形ABP,三角形BCP,三角形ACP都是等腰三角形,满足条件的P点有几个?
设p是等边三角形ABC所在平面上一点,使三角形ABP,三角形BCP,三角形ACP都是等腰三角形,满足条件的P点有几个?一定 要证明!
已知P为三角形ABC所在平面外一点,O为P在平面ABC上的射影,若PA垂直BC,PB垂直AC,则O是三角形ABC的
已知△ABC的三个顶点A,B,C及平面内一点P满足向量PA +向量PB=向量PC 求证P在三角形的外部!
O是等边三角形ABC所在平面上一点,它使三角开ABO,三角形BCO,三角形ACO都设O是等边三角形ABC所在平面上一点,它使三角形ABO、BCO、ACO都是等腰三角形.满足上述条件的O点共有几个,请图示一下
已知三角形ABC,点P是平面ABC外一点,点o是点p在平面ABC上的射影,且点o在三角形ABC内若点P到三角形ABC的三边所在直线的距离相等,则点o一定是三角形ABC的?心请给出证明!
设o为三角形ABC所在平面上一点.若实数x,y,z满足x向量OA+y向量OB+z向量OC=0向量,(x^2+y^2+c^2不等于0),则xyz=0是“点O在三角形ABC的边所在直线上的 条件.
若O是三角形ABC所在平面上任意一点,且满足向量OP=OA+入(AB+AC),则动点p的轨迹必经过三角形ABC的()心
已知点p是三角形ABC所在平面a外的一点,点O是点p在平面a上的射影.(1)若点p到三角形的三边距离相等,点O在三角形ABC内,则点O是三角形ABC的什么心?内心)(2)若点p到三角形ABC的三个顶点距离相
平面内三角形ABC及点O满足向量AO*AB=BO*BA,BO*BC=CO*CB,试判断O与ABC位置关系
已知AB两点,在同一平面内找一点C,是三角形ABC为等腰直角三角形,这样的点C的个数有几个