平面向量的数量积及应用.已知a=(sinθ,1),b=(1,cosθ),c=(0,3),-π/2<θ<π/2①若(4a-c)//b,求θ.②求Ⅰa+bⅠ的取值范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:01:54

平面向量的数量积及应用.已知a=(sinθ,1),b=(1,cosθ),c=(0,3),-π/2<θ<π/2①若(4a-c)//b,求θ.②求Ⅰa+bⅠ的取值范围.
平面向量的数量积及应用.
已知a=(sinθ,1),b=(1,cosθ),c=(0,3),-π/2<θ<π/2
①若(4a-c)//b,求θ.
②求Ⅰa+bⅠ的取值范围.

平面向量的数量积及应用.已知a=(sinθ,1),b=(1,cosθ),c=(0,3),-π/2<θ<π/2①若(4a-c)//b,求θ.②求Ⅰa+bⅠ的取值范围.
(1)4a-c=(4sinθ,1),b=(1,cosθ),
因为 (4a-c)//b ,所以 4sinθcosθ=1 ,
即 sin2θ=1/2 ,
由于 -π/2<θ<π/2 ,因此 -π<2θ<π ,
故 2θ=π/6 或 2θ=5π/6 ,
即 θ=π/12 或 5π/12 .
(2)由于 a^2=1+(sinθ)^2,b^2=1+(cosθ)^2 ,a*b=sinθ+cosθ ,
所以,|a+b|^2=a^2+b^2+2a*b=2+2(sinθ+cosθ)=2+2√2*sin(θ+π/4) ,
由于 -π/4<θ+π/4<3π/4 ,因此 -√2/2所以 0<(a+b)^2<=2+2√2 ,
因此,|a+b| 的取值范围是 (0,√(2+2√2) ] .

4a-c=(4sinθ,1)向量(a,b)平行于向量(c,d),等价于:a * d = b * c
因为(4a-c)//b即 4sinθ*cosθ=1
sinθ*cosθ=1/4=0.25 θ=15°

(1) 4a-c=(4sinθ,4)-(0,3)=(4sinθ,1)
∵ (4a-c)//b,∴ 4sinθcosθ-1=0,
sin2θ=1/2
∵ -π/2<θ<π/2,∴ -π<2θ<π
∴ 2θ=π/6,或 2θ=5π/6
所以 θ=π/12 或 θ=5π/12
(2) |a+b|^2=(sinθ+1)^2+(cosθ+1)^2=2(s...

全部展开

(1) 4a-c=(4sinθ,4)-(0,3)=(4sinθ,1)
∵ (4a-c)//b,∴ 4sinθcosθ-1=0,
sin2θ=1/2
∵ -π/2<θ<π/2,∴ -π<2θ<π
∴ 2θ=π/6,或 2θ=5π/6
所以 θ=π/12 或 θ=5π/12
(2) |a+b|^2=(sinθ+1)^2+(cosθ+1)^2=2(sinθ+cosθ)+3
=2√2sin(θ+π/4)+3
∵ -π/2<θ<π/2 ∴ -π/4<θ+π/4<3π/4
所以 1<2√2sin(θ+π/4)+3≤2√2+3
即 1<|a+b|^2≤2√2+3
所以 1<|a+b|≤√2+1
所以 |a+b|的取值范围是(1,√2+1 ]

收起

平面向量的数量积及应用.已知向量a=(4,3),b=(sinα,cosα),且a⊥b,那么tan2α等于? 平面向量的数量积及应用.已知a=(sinθ,1),b=(1,cosθ),c=(0,3),-π/2<θ<π/2①若(4a-c)//b,求θ.②求Ⅰa+bⅠ的取值范围. 平面向量 数量积已知向量a=(2cosθ,2sinθ),b=(0,-2),θ∈(π/2,π),则向量a,b的夹角为多少? 平面向量数量积的坐标表示,模,夹角!已知向量a=(-3,2),b=(2,1),t€R.求|a+tb|的最小值及相应的t值 平面向量数量积的计算1.已知向量a与向量b满足|向量a+向量b|=|向量a-向量b|,求向量a*向量b2.已知|向量a|=5,|向量b|=8,向量a*向量b=-20,求a与b的夹角 平面向量数量积的坐标表示 (10 15:1:42)已知点A(-1  0)B(1  0)C(COSɑ,SINɑ)求:向量AC垂直向量BC 平面向量的的数量积已知向量a、b不共线,且|2a+b|=|a+2b|,求证:(a+b)⊥(a-b) 平面向量数量积的坐标表示..已知a=(4,2),求与a垂直的单位向量的坐标. 一道高一平面向量数量积得应用 题已知三角形ABC中 BD CE为中线 且|BD向量|=|CE向量| 求证 |AB向量|=|AC向量| 已知向量a=12,向量b=9,当向量a//向量b,a与b的数量积 平面向量的应用的问题已知三角形ABC的三个顶点A,B,C及平面内一点P.且向量PA+向量PB+向量PC=向量AB,则点P与三角形ABC的位置关系是?答案:P在AC边上解答过程是什么啊? 平面向量数量积. 设O,A,B,C为平面上四个点,向量OA=向量a,向量OB=向量b,向量OC=向量c,且向量a+向量b+向量c=零向量,向量a与向量b的数量积=向量b与向量c的数量积=向量c与向量a的数量积=-1,则|向量a|+|向量b|+|向量c|等 关于平面向量的数量积是一个数量,可是a·b=x1x2+y1y2,它是一个向量,这跟lallblcos是数量是否矛盾了? 平面向量数量积的坐标表示 (10 15:43:40)已知两点A(-1 0)B(0 2)  求满足向量AB×向量AD=5,向量IAD|2=10 求D坐标 平面向量数量积的坐标表示 (10 16:29:1)已知两点A(-1 0)B(0 2)  求满足向量AB×向量AD=5,向量IAD|2=10 求D坐标 高中数学(平面向量数量积)已知|a|=8,|b|=10,|a+b|=16,求a与b的夹角@(精确到1度) 平面向量的数量积的定义?