设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且bcosC=(2a-c)cosB(1)求B的大小.(2)求sinA+sinC的取值范围jie

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 11:40:14

设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且bcosC=(2a-c)cosB(1)求B的大小.(2)求sinA+sinC的取值范围jie
设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且bcosC=(2a-c)cosB(1)求B的大小.(2)求sinA+sinC的取值范围
jie

设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且bcosC=(2a-c)cosB(1)求B的大小.(2)求sinA+sinC的取值范围jie
(1)bcosC=(2a-c)cosB
b(a^2+b^2-c^2)/2ab=(2a-c)(a^2+c^2-b^2)/2ac
ca^2+cb^2-c^3=2a^3+2ac^2-2ab^2-ca^2-c^3+cb^2
ac=a^2+c^2-b^2
cosB=(a^2+c^2-b^2)/2ac=1/2
∵锐角三角形ABC
∴B=60°
(2)sinA+sinC=2sin[(A+C)/2]cos[(A-C)/2]
=(√3)cos[(A-C)/2]
-π/4<(A-C)/2<π/4
√2/2<cos[(A-C)/2]≤1
∴(√6)/2<sinA+sinC≤√3