已知:m^2=n+2,n^2=m+2(m不等于n),求m^3-2mn+n^3的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 09:29:33

已知:m^2=n+2,n^2=m+2(m不等于n),求m^3-2mn+n^3的值
已知:m^2=n+2,n^2=m+2(m不等于n),求m^3-2mn+n^3的值

已知:m^2=n+2,n^2=m+2(m不等于n),求m^3-2mn+n^3的值
因为m^2=n+2,n^2=m+2
所以 m^2-n^2=n-m
即 (m-n)(m+n)=-(m-n)
m+n=-1
m^3-2mn+n^3=m·m^2-2mn+n·n^2
=m(n+2)-2mn+n(m+2)
=mn+2m-2mn+mn+2n
=2(m+n)
因为m+n=-1 所以 原式=-2

m^3=m^2*m=m(n+2)
n^3=n^2*n=n(m+2)
m^3-2mn+n^3=mn+2m-2mn+mn+2n=2m+2n
m^2=n+2,n^2=m+2
m^2-n^2=n-m
(m-n)(m+n)=-(m-n)
m+n=-1

m^3-2mn+n^3
=m(m^2-n)+n(n^2-m)
因为m^2=n+2,n^2=m+2
所以m(m^2-n)+n(n^2-m)
=2m+2n
=2(m+n)
且 因为m^2=n+2,n^2=m+2
所以 m^2-n^2=n-m
即 (m-n)(m+n)=-(m-n)
m+n=-1
所以
2(m+n)=-2