简单三角函数应用题如图,某地一天从6时到14时的温度变化曲线近似满足Y=Asin(wX+q)+b写出这段曲线的函数解析式为什么这里A=1/2*(30-10)=10b=1/2*(30+10)=20
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:10:41
简单三角函数应用题如图,某地一天从6时到14时的温度变化曲线近似满足Y=Asin(wX+q)+b写出这段曲线的函数解析式为什么这里A=1/2*(30-10)=10b=1/2*(30+10)=20
简单三角函数应用题
如图,某地一天从6时到14时的温度变化曲线近似满足Y=Asin(wX+q)+b
写出这段曲线的函数解析式
为什么这里
A=1/2*(30-10)=10
b=1/2*(30+10)=20
简单三角函数应用题如图,某地一天从6时到14时的温度变化曲线近似满足Y=Asin(wX+q)+b写出这段曲线的函数解析式为什么这里A=1/2*(30-10)=10b=1/2*(30+10)=20
Y=Asin(wX+q)+b
由图像可知:
最大值是A+b=30,
最小值是-A+b=10,
所以A=1/2(30-10),b=1/2(30+10)
简单三角函数应用题如图,某地一天从6时到14时的温度变化曲线近似满足Y=Asin(wX+q)+b写出这段曲线的函数解析式为什么这里A=1/2*(30-10)=10b=1/2*(30+10)=20
简单三角函数应用题如图,某地一天从6时到14时的温度变化曲线近似满足Y=ASIN(WX+Q)+B写出这段曲线的函数解析式为什么这里A=1/2*(30-10)=10B=1/2*(30+10)=20
三角函数模型的简单应用例1 如图1.6-1,某地一天从6~14时的温度变化曲线近似满足函数y=Asin(ωx+ )+b.(1)求这一天的最大温差;(2)写出这段曲线的函数解析式.(1)由图可知,这段时间的最大温差是200C(2
如图,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b,这里的b是怎么算的?
如图某地一天从6时至4时的温度变化曲线近似满足函数y=asinwx+a+b
如图某地一天从6时至14时的温度变化曲线近似满足函数y=asinwx+a+b
有一步不理解,如图,某地一天从6~14时的温度变化,曲线近似满足函数y=Asin(wx+Ψ)+b,(A>0,w>0,Ψ∈(0,2pai)).试求这段曲线的函数解析式.图中从6时到14时的图象是函数y=Asin(ωx+∅)+B的半个周期
如图,某地一天从6~14时的温度变化,曲线近似满足函数y=Asin(wx+Ψ)+b,(A>0,w>0,Ψ∈(0,2pai)).试求这段曲线的函数解析式
如右图所示,某地一天从6时到14时如图所示,某地一天从6~14时的温度变化曲线近似满足函数:f(x)=f(x)=Asin(ωx+φ)+b,则8时的温度大约为 (精确到1摄氏度)
一道很简单的三角函数问题如图
一道简单的三角函数数学题求解答如图,急
三角函数应用题.
三角函数应用题
如图,某地一天从6时至14时的温度变化曲线近似满足函数y=Asin(x+)+b,其中A>0 ω>0,0<φ<π1求这段时间的最大温差2写出这段曲线的函数解析式
西班牙语从某地到某地应该怎么提问如勒个题
给我一些有关工程问题的应用题从简单到有难度的
某地一天从6时至14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b.求:(1)这段时间的最大温差是多少?(2)函数的解析式图中从6时到14时的图象是函数y=Asin(ωx+φ)+b的半个周期的图象,ω=.π/8由图示
如图,数学三角函数