证明:若p为素数且p≡1(mod 4),则{[(p-1)/2]!}^2+1≡0(mod p),请大师帮帮忙,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 15:36:45

证明:若p为素数且p≡1(mod 4),则{[(p-1)/2]!}^2+1≡0(mod p),请大师帮帮忙,
证明:若p为素数且p≡1(mod 4),则{[(p-1)/2]!}^2+1≡0(mod p),请大师帮帮忙,

证明:若p为素数且p≡1(mod 4),则{[(p-1)/2]!}^2+1≡0(mod p),请大师帮帮忙,
这是著名的Euler准则的一部分.
对任意整数1<=i<=p-1,总存在惟一的整数j有i*j用p除余数为b,由于b是p的二次非剩余,故i不等于j,因此1,2,…,p-1分为(p-1)/2对,每对之积同余b,故有
(p-1)!同余b^((p-1)/2),由Wilson定理可知(p-1)!又同余-1,故得b^((p-1)/2)=-1 (mod p)

证明:若p为素数且p≡1(mod 4),则{[(p-1)/2]!}^2+1≡0(mod p),请大师帮帮忙, p为奇素数,证明同余式x^2=3(mod p)充要条件p=±1(mod 12) 初等数论伪素数的定义为什么不带p不 整除a,感觉不恰当?费马小定理原话 是“若p是素数,且p不整除a,则a∧p-1 ≡1(mod p)”,显然我认为人们好奇的 是当p不整除a且a∧p-1≡1(mod p)是p 也可能为合数 关于费马小定理费马小定理:若p是素数且a是整数则a^p≡a(mod p),特别的若a不能被p整除,则a^(p-1)≡1(mod p).这个等式的右边1(mod p)是不是普通的1 mod p.因为如果a=2,p=3;a^(p-1)=4,1 mod p=1,方程左右就不 关于同余式的证明证明同余式(-4)^((p-1)/4) = 1 (mod p) ,其中p为模4余1的素数 初等数论,若P为素数且P=1(mod4),则(((p-1)/2)!)^2+1=0(mod p) 证明:m^p+n^p恒等于0(mod p),则m^p+n^p恒等于0(mod p^2),p为奇素数 初等数论伪素数的定义为什么不带p不整除a,感觉不恰当?费马小定理原话是“若p是素数,且p不整除a,则a∧p-1≡1(mod p)”,显然我认为人们好奇的是当p不整除a且a∧p-1≡1(mod p)是p也可能为合数(人 若p是4k+3型的素数,求证x^2+1≡0(mod p)没有整数解 若p是4k+3型的素数,求证x^2+1≡0(mod p)没有整数解 再求几道”初等数论”的详解.1.求13^2006的个位码.2.设素数P≥5,证明P^2Ξ1( mod24)3.证明:若P为素数,证明:(P-1)!ΞP-1(mod p(p-1)) 弱弱地问一个数论的问题当2p+1为奇素数时,为什么(2p)!≡(-1)^p * (p!)^2 (mod 2p+1) 设n是正整数,p是素数,(n,p−1)=k,证明同余方程x^n≡1(mod p)有k个解. 证明对于任何素数p>3,2*(p-3)!≣-1 (mod p)提示:可以用威尔逊定理 费尔马小定理是什么?我不太明白啊!若p为素数,a与p互素,则ap-1≡1(mod p)?p为素数,a与p互质,那举特例设p=3,a=10,满足条件吧!可是ap-1=29≡2(mod 若p是一个质数,而a与p互质,则能被p整除?谁能被p整除啊? 数论 x^2 ≡ -n (mod p)有整数解 证明:x^2 ≡ -4n (mod p)有整数解若n为整数,p为奇质数x^2 ≡ -n (mod p)有整数解证明:x^2 ≡ -4n (mod p)有整数解 若p为质数,且p>=7,则p-1个1= (mod p) 怎么证明费马小定理?证明:假如p是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p)