从自然数列1,2,3,4,…中依次划去3的倍数和4的倍数,但保留5的倍数(如15和20等都不划去),将剩下的数依次写成新的数列:a1=1,a2=2,a3=5,a4=7,a5=10……,求 a2011 的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:31:03

从自然数列1,2,3,4,…中依次划去3的倍数和4的倍数,但保留5的倍数(如15和20等都不划去),将剩下的数依次写成新的数列:a1=1,a2=2,a3=5,a4=7,a5=10……,求 a2011 的值.
从自然数列1,2,3,4,…中依次划去3的倍数和4的倍数,但保留5的倍数(如15和20等都不划去),将剩下的数依次写成新的数列:a1=1,a2=2,a3=5,a4=7,a5=10……,求 a2011 的值.

从自然数列1,2,3,4,…中依次划去3的倍数和4的倍数,但保留5的倍数(如15和20等都不划去),将剩下的数依次写成新的数列:a1=1,a2=2,a3=5,a4=7,a5=10……,求 a2011 的值.
3,4,5,的公倍数是60,我们把每60个看成一组
每60个数划去的数的个数=(3的倍数)60×1/3+(4的倍数)60×1/4-(3和5的公倍数)60×1/15-(4和5的公倍数)60×1/20-(3,4的公倍数)60×1/12倍数60×1+(3,4,5,的公倍数60×1/60=24个数
每60个数剩下的数个数=60-24=36个数.
数列里共有的组数=2011÷36=55.31个.
就说明55×60=3300个数有55×36=1980个数留下了.
另外留下的31个数我们从1-60个数里面找下规律【每60个一组的数保留的数规律也一样,都是第1-第10个数留5个,11-20留7个,21-30留6个,31-40留6个,41-50留7个,51-60留5个】第50个数正好留下31个
总个数=3300+50=3350.
a2011=3350.

每12个数字将会有6个划去的数字,
如1~12,划去了3,4,6,8,9,12,
所以若一共有x个数,且x是12的倍数,则会划去一半的数,
比如说一共有4020个数,就会划去一半的数,剩下2010个,
所以a2011=4021.