1.计算∫ |lnx| /x^2dx 其中x = 1/e→ +∞22.求微分方程dy/dx = (y/x)^2 -y/x 满足条件y(1)=1的特解.y=2x/(1+x^2)3.求二重积分∫∫√x^2+y^2 dxdy,其中积分区域D={(x,y)|x^2+y^2≤2x,0≤y≤x}.10/9√2
1.计算∫ |lnx| /x^2dx 其中x = 1/e→ +∞22.求微分方程dy/dx = (y/x)^2 -y/x 满足条件y(1)=1的特解.y=2x/(1+x^2)3.求二重积分∫∫√x^2+y^2 dxdy,其中积分区域D={(x,y)|x^2+y^2≤2x,0≤y≤x}.10/9√2
1.计算∫ |lnx| /x^2dx 其中x = 1/e→ +∞
2
2.求微分方程dy/dx = (y/x)^2 -y/x 满足条件y(1)=1的特解.
y=2x/(1+x^2)
3.求二重积分∫∫√x^2+y^2 dxdy,其中积分区域D={(x,y)|x^2+y^2≤2x,0≤y≤x}.
10/9√2
1.计算∫ |lnx| /x^2dx 其中x = 1/e→ +∞22.求微分方程dy/dx = (y/x)^2 -y/x 满足条件y(1)=1的特解.y=2x/(1+x^2)3.求二重积分∫∫√x^2+y^2 dxdy,其中积分区域D={(x,y)|x^2+y^2≤2x,0≤y≤x}.10/9√2
第二道:令y / x=t ===> y=xt ===> dy/dx = t + x dt/dx
t + x dt/dx = t² - t
x dt/dx = t² - 2t
dt / (t² -2t) = dx /x 利用 1/ (t² -2t) = 1/2 [1 / (t -2) - 1 / t]
dt / [1 / (t -2) - 1 / t] = 2 dx /x
Ln((t-2) / t) = Lnx² + LnC
(t-2) / t = Cx ²
t = -2 / (Cx² -1)
即 y / x = -2 / (Cx² -1)
y = -2x / (Cx² -1)
代入条件当x = 1时,y(1) = 1,得到C = -1
特解为:y = 2x / (x² +1)
第三道:求二重积分∫∫√x^2+y^2 dxdy,其中积分区域D={(x,y)|x^2+y^2≤2x,0≤y≤x}.
参考答案:10/9√2
D={(x,y)|x²+y²≤2x,0≤y≤x}
===> D={(x,y)|(x-1)² + y²≤1,0≤y≤x}
===>方法1:先x后y:D={(x,y)|(x = y →1+√(1 - y²),0≤y≤1}
方法2:极坐标:r² = 2rcosθ;即:θ = 0→π/4;r = 0→2cosθ
原积分 = ∫∫√x^2+y^2 dxdy
=∫{θ = 0→π/4}∫{r = 0→2cosθ} √r² r drdθ
=∫{θ = 0→π/4}∫{r = 0→2cosθ} r² drdθ
=∫{θ = 0→π/4} 8cos³θ /3 dθ
=8/3∫{θ = 0→π/4} 1 - sin²θ dsinθ
=8/3 [ sinθ - sin³θ/3 ] {sinθ = 0→1/√2}
=8/3 [1/√2 - 1/(6√2)]
=8/3 [5/(6√2)]
=10/(9√2)