急,平面内的两条直线有相交和平行两种位置关系……平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 13:37:40

急,平面内的两条直线有相交和平行两种位置关系……平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,
急,平面内的两条直线有相交和平行两种位置关系……
平面内的两条直线有相交和平行两种位置关系
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.

急,平面内的两条直线有相交和平行两种位置关系……平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,
(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD.∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论:∠BPD=∠BQD+∠B+∠D.
(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.
又∵∠AGB=∠CGF.
∠CGF+∠C+∠D+∠F=360°
∴∠A+∠B+∠C+∠D∠E+∠F=360°.

(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3...

全部展开

(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.
又∵∠AGB=∠CGF.
∠CGF+∠C+∠D+∠F=360°
∴∠A+∠B+∠C+∠D∠E+∠F=360°.

收起

(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3...

全部展开

(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.
又∵∠AGB=∠CGF.
∠CGF+∠C+∠D+∠F=360°
∴∠A+∠B+∠C+∠D∠E+∠F=360°.

收起

(1)不成立 ∠BPD=∠B+∠D 过点P做 AB的平行线 由内错角相等 得出结论
(2)∠BPD=∠B+∠D+∠BQD
(3)∠A+∠B+∠C+∠D+∠E+∠F=360°

一趟7f8unj6i6yvbi6bvyi6tjh人回复分隔带甘道夫分工会发的

(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3...

全部展开

(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.
又∵∠AGB=∠CGF.
∠CGF+∠C+∠D+∠F=360°
∴∠A+∠B+∠C+∠D∠E+∠F=360°

收起

:(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(...

全部展开

:(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.
又∵∠AGB=∠CGF.
∠CGF+∠C+∠D+∠F=360°
∴∠A+∠B+∠C+∠D∠E+∠F=360°

收起


(1)不成立
结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD
∴∠B=∠BED.
又∵∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D. ...

全部展开


(1)不成立
结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD
∴∠B=∠BED.
又∵∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)∠BPD=∠BQD+∠B+∠D.
(3)由(2)得:∠AGB=∠A+∠B+∠E.
又∵∠AGB=∠CGF.
∠CGF+∠C+∠D+∠F=360°
∴∠A+∠B+∠C+∠D∠E+∠F=360°.

收起

(1)不成立.结论是∠BPD=∠B+∠D
延长BP交CD于点E,
∵AB∥CD
∴∠B=∠BED
又∵∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论:∠BPD=∠BQD+∠B+∠D.
(3)连接EG并延长,
根据三角形的外角性质,∠AGB=∠A+∠B+∠E,
又∵∠AGB=∠CGF,
在四边形CDFG...

全部展开

(1)不成立.结论是∠BPD=∠B+∠D
延长BP交CD于点E,
∵AB∥CD
∴∠B=∠BED
又∵∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论:∠BPD=∠BQD+∠B+∠D.
(3)连接EG并延长,
根据三角形的外角性质,∠AGB=∠A+∠B+∠E,
又∵∠AGB=∠CGF,
在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.

收起

(1)不成立.结论是∠BPD=∠B+∠D
延长BP交CD于点E,
∵AB∥CD
∴∠B=∠BED
又∵∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论:∠BPD=∠BQD+∠B+∠D.
(3)连接EG并延长,
根据三角形的外角性质,∠AGB=∠A+∠B+∠E,
又∵∠AGB=∠CGF,
在四边形CDFG...

全部展开

(1)不成立.结论是∠BPD=∠B+∠D
延长BP交CD于点E,
∵AB∥CD
∴∠B=∠BED
又∵∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论:∠BPD=∠BQD+∠B+∠D.
(3)连接EG并延长,
根据三角形的外角性质,∠AGB=∠A+∠B+∠E,
又∵∠AGB=∠CGF,
在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.

收起

(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3...

全部展开

(1)不成立,结论是∠BPD=∠B+∠D.
延长BP交CD于点E,
∵AB∥CD. ∴∠B=∠BED.
又∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论: ∠BPD=∠BQD+∠B+∠D.
(3)由(2)的结论得:∠AGB=∠A+∠B+∠E.
又∵∠AGB=∠CGF.
∠CGF+∠C+∠D+∠F=360°
∴∠A+∠B+∠C+∠D∠E+∠F=360°.

收起

平面内的两条直线有相交和平行两种位置关系 平面内的两条直线有相交和平行两种位置关系 平面内的两条直线有相交和平行两种关系 再同一平面内,两条直线的位置关系有A平行 B相交 C平行和相交 D平行 相交和垂直再同一平面内,两条直线的位置关系有A平行 B相交 C平行和相交 D平行 相交和垂直但为什么不可以重合呢? 在同一平面内,两条直线的位置关系有( )两条直线相交,交点个数是( ),两条直线平行,交点个数( )个 急,平面内的两条直线有相交和平行两种位置关系……平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D, 急,答对再加30分!平面内的两条直线有相交和平行两种位置关系……平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠ 在同一平面内,不重合的两条直线,他们的位置关系有平行和()两种. 判断正误:在同一平面内,两条直线的位置关系有三种:平行、垂直和相交. 在同一平面内 和第三条直线都不相交的两条直线平行 在同意平面内,两条直线的位置关系是 A.平行于垂直 B.平行和相交c.垂直和相交D.平行,垂直和在同意平面内,两条直线的位置关系是 A.平行于垂直 B.平行和相交c.垂直和相交D.平行,垂直和相交 在同一平面内,两条直线有相交平行两种情况. 同一平面内的两条直线的位置关系有()和()两种情况,其中相交成直角时就叫两条直线互相(). 平面内的两条直线有相交和平行两种位置关系 (1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠ 平面内的两条直线有相交和平行两种位置关系 (1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B= 平面内的两条直线有相交和平行两种位置关系 (1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠ 平面内的两条直线有相交和平行两种位置关系 (1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B= 在同一平面内,不重合的两条直线,它们的位置关系有平行和( )两种.垂直是( )在同一平面内,不重合的两条直线,它们的位置关系有平行和( )两种.垂直是( )中的一种特殊形式,当两条直线