已知数列{an}前n项和为Sn=(n²)+n 1求数列通项公式 2令bn=1\[an*a﹙n+1)]求数列{bn}前n项和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 10:38:08
已知数列{an}前n项和为Sn=(n²)+n 1求数列通项公式 2令bn=1\[an*a﹙n+1)]求数列{bn}前n项和
已知数列{an}前n项和为Sn=(n²)+n 1求数列通项公式 2令bn=1\[an*a﹙n+1)]求数列{bn}前n项和
已知数列{an}前n项和为Sn=(n²)+n 1求数列通项公式 2令bn=1\[an*a﹙n+1)]求数列{bn}前n项和
(1)
当n=1时,a1=S1=1²+1=2
当n≥2时,an=Sn-S(n-1)=(n²+n)-[(n-1)²+(n-1)]=2n
所以{an}的通项公式为an=2n
(2)
bn=1/[an*a(n+1)]=1/[2n*2(n+1)]=1/[4n(n+1)]
所以{bn}的前n项和Tn
=1/(4×1×2)+1/(4×2×3)+……+1/[4n(n+1)]
=(1/4){1/(1×2)+1/(2×3)+……+1/[n(n+1)]}
=(1/4){(1/1-1/2)+(1/2-1/3)+……+[1/n-1/(n+1)]}
=(1/4)[1-1/(n+1)]
=n/[4(n+1)]