已知|a-1|+(ab-2)²=0求1/(a+1)(b+1)+1/(a+2)(b+2)加到1/(a+2008)(b+2008)的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:43:42

已知|a-1|+(ab-2)²=0求1/(a+1)(b+1)+1/(a+2)(b+2)加到1/(a+2008)(b+2008)的值
已知|a-1|+(ab-2)²=0求1/(a+1)(b+1)+1/(a+2)(b+2)加到1/(a+2008)(b+2008)的值

已知|a-1|+(ab-2)²=0求1/(a+1)(b+1)+1/(a+2)(b+2)加到1/(a+2008)(b+2008)的值
|a-1|+(ab-2)²=0
因为|a-1|>=0,(ab-2)²>=0
所以a-1=0,ab-2=0
a=1,b=2
1/(a+1)(b+1)+1/(a+2)(b+2)加到1/(a+2008)(b+2008)
=1/(2*3)+1/(3*4)+..+1/(2009*2010)
=1/2-1/3+1/3-1/4+..+-1/2009+1/2009-1/2010
=1/2-1/2010
=502/1005

由|a-1|+(ab-2)²=0得 a=1,b=2
所以
所求表达式等于
1/(2*3)+1/(3*4)+……+1/(2009*2010)
(裂项得)=(1/2-1/3)+(1/3-1/4)+……+(1/2009-1/2010)=1/2-1/2010=502/1005

已知|a-1|+(ab-2)²=0
|a-1|=0。。。。。a=1
(ab-2)²=0...ab-2=0...ab=2.....b=2
后面的问题就是
1/(1+1)(2+1)+1/(1+2)(2+2)加到1/(1+2008)(2+2008)
=1/(2*3)+1/(3*4)+...+1/(2009*2010)
下面注意
...

全部展开

已知|a-1|+(ab-2)²=0
|a-1|=0。。。。。a=1
(ab-2)²=0...ab-2=0...ab=2.....b=2
后面的问题就是
1/(1+1)(2+1)+1/(1+2)(2+2)加到1/(1+2008)(2+2008)
=1/(2*3)+1/(3*4)+...+1/(2009*2010)
下面注意
1/(2*3)=1/2-1/3
1/(3*4)=1/3-1/4
.....
1/(2009*2010)=1/2009-1/2010
中间的项抵消
原式=1/2-1/2010
OK

收起