f(x)在(负无穷,a)可导,lim(x趋向于负无穷)f'(x)=B0,证明f(x)在(负无穷,a)至少有一个零点.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:12:38
f(x)在(负无穷,a)可导,lim(x趋向于负无穷)f'(x)=B0,证明f(x)在(负无穷,a)至少有一个零点.
f(x)在(负无穷,a)可导,lim(x趋向于负无穷)f'(x)=B0,证明f(x)在(负无穷,a)至少有一个零点.
f(x)在(负无穷,a)可导,lim(x趋向于负无穷)f'(x)=B0,证明f(x)在(负无穷,a)至少有一个零点.
由lim(x左趋向于a)[f(x)/(x-a)]=A>0
就可以知道f(a)趋于0,且f '(a)=A>0
而lim(x趋向于负无穷)f'(x)=B
f(x)在(负无穷,a)可导,lim(x趋向于负无穷)f'(x)=B0,证明f(x)在(负无穷,a)至少有一个零点.
设函数f(x)在点x=a可导,且f(a)不等于0,求lim(x趋向无穷)[(f(a+1/x)/f(a)]^x
证明在定义在[a,正无穷)的连续函数符合罗尔定理,即罗尔定理的推广函数f(x)在(a,正无穷)可导,且lim(x→+a)f(x)=A,lim(x→正无穷)=A,证明存在ζ∈(a,正无穷),使得f '(ζ)=0.(顺便问一下:f(x)在
关于极限不等式性质证明题原题:设f(x)在负无穷到正无穷可导,且limf(x)=limf(x)=A x->+无穷 x->-无穷求证:,存在c在(负无穷,正无穷),使得f'(x)=0答案给的:由极限
证明 若f(x)在(a,+∞)可导,lim(x->a+)f(x)=lim(x->+∞)f(x),则至少有一点b 使得f‘(b)=0也就是f(x)在a的右极限等于f(x)在正无穷的极限
关于极限不等式性质证明题原题:设f(x)在负无穷到正无穷可导,且limf(x)=limf(x)=Ax->+无穷 x->-无穷求证:,存在c在(负无穷,正无穷),使得f'(x)=0由极限不等式性质转化为有限区间的情形若f(x)
Lim(△x->0) f(x+a△x)-f(x-b△x)/△x=?f(x)在x可导 a,b为常数
设函数f(x)在[0,+无穷)上有定义,A是一常数,且|f(x)-A|=1/sqrt(x),则()A lim(x→1)f(x)=1B lim(x→1)f(x)=AC lim(x→+无穷)f(x)=1D lim(x→+无穷)f(x)=A这种题应该怎么做
设函数f(x)=x/a+e^bx在连续,且lim(x趋向负无穷)f(x)=0,则常数a,b满足()A a
设函数fx在点x=a可导,f(a)>0,试求极限lim(f(a+1/n)/f(a))的n次方(n趋向于无穷)
证明:若lim(x->+无穷)f(x)=0,且g(x)在(a,+无穷)有界,则lim(x->+无穷)f(x)g(x)=0
设函数f(x)在点x=a可导,求lim[f(a)-f(a-△x)]/△x △x→0lim[f(a)-f(a-△x)]/△x =-lim[f(a)-f(a-△x)]/(-△x) 为什么会是分母-△x请给出具体理由,
证明 两个 极限两个x趋于a的极限f(x)和g(x),第一个f(x)是正无穷,第二个g(x)是c,(c是一个实数)。要证明1,lim [f(x)+g(x)]=正无穷 2,lim[f(x)g(x)]=正无穷 (当c>0) 3,lim[f(x)g(x)]=负无穷(当c
证明:若X趋于正无穷及X趋于负无穷时,函数F(X)的极限都存在且都等于A,则lim f(x)=A
f(x)在[a,+无穷)内可导,且lim[f(x)+kf'(x)]=l(x→∞)(k>0).证明:limf(x)=l,limf'(x)=0.
f(x)在x0可导,lim(x→0)f(x0+x)-f(x0-3x)/x
lim(x->0)lnx/x答案是负无穷
,关于函数连续性质的题设f(x)在负无穷到正无穷上连续(开区间),且lim[f(x)/x](x趋近于无穷)=0 证明:存在一个y属于负无穷到正无穷,使得f(y)+y=0