设f(x)=log3(3^x+1)+1/2ax是偶函数,则a=?f(x)=f(-x)f(x)-f(-x)=0log3(3^x+1)+1/2ax-log3(3^-x+1)+1/2ax=0log3[(3^x+1)/(3^-x+1)]+ax=0log3[3^(x+1+x-1)]+ax=0log3[3^(2x)]+ax=02x+ax=0(2+a)x=0这是恒等式则2+a=0a=-2
设f(x)=log3(3^x+1)+1/2ax是偶函数,则a=?f(x)=f(-x)f(x)-f(-x)=0log3(3^x+1)+1/2ax-log3(3^-x+1)+1/2ax=0log3[(3^x+1)/(3^-x+1)]+ax=0log3[3^(x+1+x-1)]+ax=0log3[3^(2x)]+ax=02x+ax=0(2+a)x=0这是恒等式则2+a=0a=-2
设f(x)=log3(3^x+1)+1/2ax是偶函数,则a=?
f(x)=f(-x)
f(x)-f(-x)=0
log3(3^x+1)+1/2ax-log3(3^-x+1)+1/2ax=0
log3[(3^x+1)/(3^-x+1)]+ax=0
log3[3^(x+1+x-1)]+ax=0
log3[3^(2x)]+ax=0
2x+ax=0
(2+a)x=0
这是恒等式则2+a=0
a=-2
设f(x)=log3(3^x+1)+1/2ax是偶函数,则a=?f(x)=f(-x)f(x)-f(-x)=0log3(3^x+1)+1/2ax-log3(3^-x+1)+1/2ax=0log3[(3^x+1)/(3^-x+1)]+ax=0log3[3^(x+1+x-1)]+ax=0log3[3^(2x)]+ax=02x+ax=0(2+a)x=0这是恒等式则2+a=0a=-2
f(x)=f(-x)
f(x)-f(-x)=0 【偶函数性质】
log3(3^【x+1】)+1/2ax-【log3(3^【-x+1】)-1/2ax】=0
log3[(3^【x+】)/(3^【-x+1】)]+ax=0
log3[3^(x+1+x-1)]+ax=0
log3[3^(2x)]+ax=0
2x+ax=0
(2+a)x=0
这是恒等式,x≠0
则2+a=0
a=-2
自己猜