勘根定理为什么需要在闭区间内连续?在开区间内连续不可以么?勘根定理:假设函数f在闭区间[a,b]中连续,且函数值f(a)与f(b)异号(即,一为正一为负).则在区间(a,b)中找到一个数c,使得f(c) = 0(

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:12:13

勘根定理为什么需要在闭区间内连续?在开区间内连续不可以么?勘根定理:假设函数f在闭区间[a,b]中连续,且函数值f(a)与f(b)异号(即,一为正一为负).则在区间(a,b)中找到一个数c,使得f(c) = 0(
勘根定理为什么需要在闭区间内连续?在开区间内连续不可以么?
勘根定理:假设函数f在闭区间[a,b]中连续,且函数值f(a)与f(b)异号(即,一为正一为负).则在区间(a,b)中找到一个数c,使得f(c) = 0(即,c为函数f的根).

勘根定理为什么需要在闭区间内连续?在开区间内连续不可以么?勘根定理:假设函数f在闭区间[a,b]中连续,且函数值f(a)与f(b)异号(即,一为正一为负).则在区间(a,b)中找到一个数c,使得f(c) = 0(

勘根定理为什么需要在闭区间内连续?在开区间内连续不可以么?勘根定理:假设函数f在闭区间[a,b]中连续,且函数值f(a)与f(b)异号(即,一为正一为负).则在区间(a,b)中找到一个数c,使得f(c) = 0( 罗尔定理为什么要在闭区间连续而不是开空间连续? 为什么在一些关于导数的定理中总是在闭区间连续在开区间可导?为什么不是开区间连续或者闭区间可导? 零点定理为什么一定要在闭区间上连续,如果再开区间上连续,会有什么后果 拉格朗日中值定理中为什么在闭区间连续要在开区间可导?能否在闭区可导间开区间可导?或者两个都是闭区间 定积分比较定理中,为什么要求两函数在闭区间连续在闭区间连续,且f(x)小于等于g(x),结论就为f(x)在区间内的积分“小于”g(x)在区间内的积分.为什么要求连续?不连续f(x)的积分不是也小于y(x) 关于微分中值定理,我看到条件都是在,a到b的闭区间上连续,在开区间上可导.为什么不能在开区间上连续,或者在闭区间上可导呢?求告知, 请问罗尔定理为什么不能把“在闭区间[a,b]上连续去掉”? 拉格朗日中值定理的小小疑问拉格朗日中值定理:如果函数f(x)在闭区间[a ,b]上连续,在开区间(a ,b)内可导,那么在(a ,b)内至少有一点 & (a 函数在闭区间可导和在闭区间可导的区别,为什么中值定理都只要求在开区间内可导?为什么中值定理都只要求在开区间内可导?闭区间连续,开区间可导,所以闭区间也就可导了?解释下为什么吧. 微积分的连续的问题……闭区间上有定义,开区间上连续……为什么要强调开闭区间?若函数在闭区间[a,b]上有定义,在开区间(a,b)内每点都连续,且在a右连续,在b左连续,则称函数在闭区间[a,b]上 高中零点存在定理零点定理为什么一定要在闭区间上连续,如果再开区间上连续,会有什么后果,百度有回答的,最好有点具体例题, 为什么介值定理要求定义与闭区间,开区间不行吗?比如下面这道题证明:若函数f(X)在开区间(a,b)内连续,X1,X2,.Xn是(a,b)内个点,则必有E属于(a,b),使 f(E)=[f(X1)+f(X2)+.+f(Xn)]/n 能不能用介值定理? 谁知道罗尔定理里为什么在(A,B)开区间可导而不是闭区间我很急啊谢谢还有单调为什么是连续的 中值定理为什么要在开区间内都可以导才可以?为什么会这样? 关于连续函数定积分的比较定理问题!急求数学高人解答!为什么连续函数比较定理中的条件是 在闭区间连续,且f(x)小于等于g(x),结论就为f(x)在区间内的积分“小于”g(x)在区间内的积分,求知道 函数在开区间内可导闭区间内连续是否等价函数在该闭区间内可导了, 关于高等数学罗尔定律罗尔定理中的其中3个条件:1.在闭区间连续2.在开区间可导3.端点函数值相等我想知道的是,既然在开区间内可导,那么必定在这个区间内连续所以我想知道只有条件2和3