(sinx+siny)^2+(cosx+cosy)^2为什么等于1+1+2(sinxsiny+cosxcosy)=2+2cos(x-y)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:45:02
(sinx+siny)^2+(cosx+cosy)^2为什么等于1+1+2(sinxsiny+cosxcosy)=2+2cos(x-y)
(sinx+siny)^2+(cosx+cosy)^2为什么等于1+1+2(sinxsiny+cosxcosy)=2+2cos(x-y)
(sinx+siny)^2+(cosx+cosy)^2为什么等于1+1+2(sinxsiny+cosxcosy)=2+2cos(x-y)
(sinx+siny)^2+(cosx+cosy)^2
= sinx^2 + siny^2 + 2sinxsiny + cosx^2 + cosy^2 + 2cosxcosy
=(sinx^2 + cosx^2)+(siny^2 + cosy^2)+ 2sinxsiny + 2cosxcosy
= 1 + 1 + 2 (sinxsiny + cosxcosy)
再根据 余弦差交公式 sinxsiny+cosxcosy = cos(x-y)
即得 (sinx+siny)^2+(cosx+cosy)^2
= 1 + 1 + 2 (sinxsiny + cosxcosy)
= 2 + 2cos(x-y)
(sinx+siny)^2+(cosx+cosy)^2
=(sinx)^2+2sinxsiny+(siny)^2+(cosx)^2+2cosxcosy+(cosy)^2
=(sinx)^2+(cosx)^2+(siny)^2+(cosy)^2+2sinxsiny+2cosxcosy
=1+1++2(sinxsiny+cosxcosy) [公式(sinx)^2+(cosx)^2=1]
=2+2cos(x-y) [公式cos(x-y)=cosxcosy+sinxsiny]