设函数f(x)=cos(2x+π/3)+sin方x1)求函数f(x)的最大值和最小正周期2)设A、B、C为△ABC的三个内角,若cosB=1/3,f(C/2)=-1/4,且C为锐角,求sinA

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:35:59

设函数f(x)=cos(2x+π/3)+sin方x1)求函数f(x)的最大值和最小正周期2)设A、B、C为△ABC的三个内角,若cosB=1/3,f(C/2)=-1/4,且C为锐角,求sinA
设函数f(x)=cos(2x+π/3)+sin方x
1)求函数f(x)的最大值和最小正周期
2)设A、B、C为△ABC的三个内角,若cosB=1/3,f(C/2)=-1/4,且C为锐角,求sinA

设函数f(x)=cos(2x+π/3)+sin方x1)求函数f(x)的最大值和最小正周期2)设A、B、C为△ABC的三个内角,若cosB=1/3,f(C/2)=-1/4,且C为锐角,求sinA
f(x)=cos(2x+π/3)+sin²x
=cos2xcosπ/3-sin2xsinπ/3+[1-cos(2x)]/2
=1/2cos2x-√3/2sin2x+1/2-1/2cos2x
=-√3/2sin2x+1/2
当sin2x=-1时,最大值=(1+√3)/2
最小正周期=2π/2=π
f(C/2)=-√3/2sinC+1/2=-1/4
sinC=√3/2
∵C为锐角
C=π/3
cosC=1/2
∵cosB=1/3
∴sinB=2√2/3
sinA=sin(π-B-C)
=sin(B+C)
=sinBcosC+cosBsinC
=2√2/3×1/2+1/3×√3/2
=√2/3+√3/6

设函数f(X)=cos(2x+π/3)+sin方x。设A、B、C为△ABC的三个内角,设函数f(X)=cos(2x+π/3)+sin x。A、B、C为△ABC的三个内角,若

f(x)=cos(2x+π/3)+sin方x=cox2xcosπ/3-sin2xsinπ/3+(1-cos2x)/2
=1/2-根3/2*sin2x
因为-1<=sin2x<=1
所以:f(x)=1/2-根3/2*sin2x
1/2-根3/2《=f(x)<=1/2+根3/2
最大值为1/2+根3/2
1/2-根3/2*sinC=-1/4
si...

全部展开

f(x)=cos(2x+π/3)+sin方x=cox2xcosπ/3-sin2xsinπ/3+(1-cos2x)/2
=1/2-根3/2*sin2x
因为-1<=sin2x<=1
所以:f(x)=1/2-根3/2*sin2x
1/2-根3/2《=f(x)<=1/2+根3/2
最大值为1/2+根3/2
1/2-根3/2*sinC=-1/4
sinC=根3/2
C=π/3
cosB=1/3
B=arccos1/3
A=π-π/3-arccos1/2
sinA=sin(π/3+arccos1/2)
=sinπ/3cos(arccos1/3)+sin(arccos1/3)cosπ/3
=根3/2*1/3+2根2/3*1/2
=(根3+2根2)/6

收起

f(x)=[(1/2)cos2x-(√3/2)sin2x]+(1/2)[1-cos2x]=-(√3/2)sin2x+(1/2)
1、最大值是√3+(1/2),最小正周期是π;
2、f(C/2)=-1/4,得:sinC=√3/2,则C=π/3,又cosB=1/3,则sinB=2√2/3
sinA=sin(2π/3-B)=(√3/2)cosB+(1/2)sinB=[√3+2√2]/6

1)f(x)=cos(2x+π/3)+sin方x=cos2xcosπ/3-sin2xsinπ/3+(1-cos2x)/2
=1/2cos2x-根3/2sin2x+1/2-1/2cos2x=1/2-根3/2sin2x
所以最大值为1/2+根3/2,最小正周期为π
2)f(C/2)=-1/4,即1/2-根3/2sinC=-1/4,所以sinC=根3/2,...

全部展开

1)f(x)=cos(2x+π/3)+sin方x=cos2xcosπ/3-sin2xsinπ/3+(1-cos2x)/2
=1/2cos2x-根3/2sin2x+1/2-1/2cos2x=1/2-根3/2sin2x
所以最大值为1/2+根3/2,最小正周期为π
2)f(C/2)=-1/4,即1/2-根3/2sinC=-1/4,所以sinC=根3/2,因为C为锐角,所以C=π/6
所以sinA=sin(π-π/6-B)=sin(5π/6-B)=sin5π/6cosB-cos5π/6sinB=(1/2)*(1/3)-(根3/2)*(2根2)/3
=(1-2根6)/6

收起