∫cotx(cotx-cscx)dx=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:39:58
∫cotx(cotx-cscx)dx=
∫cotx(cotx-cscx)dx=
∫cotx(cotx-cscx)dx=
∫cotx(cotx-cscx)dx
=∫(cos^2x-cosx)/sin^2xdx (化简得来的)
=∫(1-sin^2x-cosx)/sin^2xdx
=∫(1/sin^2x-1-cosx/sin^2x)dx
=-x+∫1/sin^2xdx-∫1/sin^2xd(sinx)
=-x+tanx+1/sinx+C
我是去打酱油的,路过
查高等数学上册后面的积分表吧
∫cotx(cotx-cscx)dx @(cotx = cosx/sinx & cscx = 1/sinx)
=∫(cosx/sinx) * [(cos-1)/sinx] dx @(sinx^2 + cosx^2 = 1)
=∫[(cosx)^2-cosx]/[1-(cosx)^2] dx
=∫-1+1/(1+cosx) dx @(1 ...
全部展开
∫cotx(cotx-cscx)dx @(cotx = cosx/sinx & cscx = 1/sinx)
=∫(cosx/sinx) * [(cos-1)/sinx] dx @(sinx^2 + cosx^2 = 1)
=∫[(cosx)^2-cosx]/[1-(cosx)^2] dx
=∫-1+1/(1+cosx) dx @(1 + cosx = [cos(x/2)]^2)
= -x + ∫[sec(x/2)]^2 dx
= -x + 2*{∫[sec(x/2)]^2 d(x/2)} @(整体:x/2)
= -x + 2tan(x/2) + C
#
收起