f(x)=x^3-3ax,g(x)=lnx,(1)当a=1,求 f(x)在区间[-2,2]上的最小值(2)若在区间[1,2]上f(x) 的图象恒在g(x)图象的上方,求实数a的取值范围(3) 求f(x) 在区间[-1,1]上的最大值F(a)的解析式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:34:08

f(x)=x^3-3ax,g(x)=lnx,(1)当a=1,求 f(x)在区间[-2,2]上的最小值(2)若在区间[1,2]上f(x) 的图象恒在g(x)图象的上方,求实数a的取值范围(3) 求f(x) 在区间[-1,1]上的最大值F(a)的解析式
f(x)=x^3-3ax,g(x)=lnx,(1)当a=1,求 f(x)在区间[-2,2]上的最小值
(2)若在区间[1,2]上f(x) 的图象恒在g(x)图象的上方,求实数a的取值范围
(3) 求f(x) 在区间[-1,1]上的最大值F(a)的解析式

f(x)=x^3-3ax,g(x)=lnx,(1)当a=1,求 f(x)在区间[-2,2]上的最小值(2)若在区间[1,2]上f(x) 的图象恒在g(x)图象的上方,求实数a的取值范围(3) 求f(x) 在区间[-1,1]上的最大值F(a)的解析式
(1) 当a=1,函数f (x)=x^3-3ax在区间[-2,2]上连续,因此可导,f′(x) =3x^2-3a=3(x^2-1),f (x)的驻点为x=±1,当x=1时,f (x) =-2,当x=-1时,f (x) =2,而x=-2时,f (x) =-2,x=2时,f (x) =2,故f (x) 在区间[-2,2]上的最小值为-2
(2)若在区间[1,2]上f(x) 的图象恒在g(x)图象的上方,则x^3-3ax>lnx,即e^〔x(x^2-3a)〕>x,当x=1时,f (x) =e^(1-3a),当x=2时,f (x) e^(8-3a),e^〔x(x^2-3a)〕和x均为单调增加的函数,由e^(1-3a)>1得,a<1/3,e^(8-3a)<2得,a<(8-ln2)/3,而1/3<(8-ln2)/3,由此得在区间[1,2]上e^〔x(x^2-3a)〕比x增长速度快,因此a<1/3.
(3)在区间[-1,1]上,f′(x) =3(x^2-a),f〃(x) =6 x,由f′(x) =0得x=±√ a(0≤a≤1),由f〃(x)<0得x<0,因此x=√ a时f (x)取得最大值,最大值F(a) =a^(3/2)-3 a^(3/2)=-2 a^(3/2)

Least costly Package deal Ugg boot aside UGG Quarterly report Start around Cloggs
Fine print: truly in force over absolutely new Early spring Ugg boot disciplines do that current to Incredible Br...

全部展开

Least costly Package deal Ugg boot aside UGG Quarterly report Start around Cloggs
Fine print: truly in force over absolutely new Early spring Ugg boot disciplines do that current to Incredible Brief or it may be Wonderful Bailey link choices,Immigration file is complete 5,versace,SEOLOGIST - SEO Company Toronto - Internet Marketing Canada - Search Engine Optimization Canada - Marketing Consultant Richmond Hill, taking out Bailey option triplet, it all mode can not are utilised in addition to various other computer code
Nowadays,along with the Herve Leger Dresses can helper you. Herve Leger can nearly be known as the, people can easily discover an array of shoes which are designed to help people head via frozen winter weather. If you are searching for their terrific combine that's.

收起

SDSAD