这是我做出来的VAR(向量自回归模型)的结果.看不太懂.着急哎.怎么看估计值显著不显著啊?不显著怎么办啊.Vector Autoregression EstimatesDate:05/08/12 Time:16:43Sample(adjusted):1991 2010Included observations:20 a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:41:37
这是我做出来的VAR(向量自回归模型)的结果.看不太懂.着急哎.怎么看估计值显著不显著啊?不显著怎么办啊.Vector Autoregression EstimatesDate:05/08/12 Time:16:43Sample(adjusted):1991 2010Included observations:20 a
这是我做出来的VAR(向量自回归模型)的结果.看不太懂.着急哎.
怎么看估计值显著不显著啊?不显著怎么办啊.
Vector Autoregression Estimates
Date:05/08/12 Time:16:43
Sample(adjusted):1991 2010
Included observations:20 after adjusting endpoints
Standard errors in ( ) & t-statistics in [ ]
\x05CPI\x05WI\x05R\x05STOCKR\x05DEBTR
CPI(-1)\x05-0.549502\x05-1.619005\x05-0.182509\x05-12.31265\x05 0.015437
\x05 (0.46770)\x05 (0.62550)\x05 (0.14828)\x05 (9.18085)\x05 (0.20237)
\x05[-1.17491]\x05[-2.58832]\x05[-1.23086]\x05[-1.34112]\x05[ 0.07628]
\x05\x05\x05\x05\x05
WI(-1)\x05 0.950522\x05 1.782923\x05 0.232765\x05 2.680205\x05 0.126980
\x05 (0.28503)\x05 (0.38120)\x05 (0.09037)\x05 (5.59512)\x05 (0.12333)
\x05[ 3.33483]\x05[ 4.67710]\x05[ 2.57582]\x05[ 0.47903]\x05[ 1.02961]
\x05\x05\x05\x05\x05
R(-1)\x05-2.777405\x05-3.044593\x05 0.131439\x05 50.58329\x05 0.195050
\x05 (1.32301)\x05 (1.76942)\x05 (0.41945)\x05 (25.9707)\x05 (0.57245)
\x05[-2.09930]\x05[-1.72067]\x05[ 0.31336]\x05[ 1.94770]\x05[ 0.34073]
\x05\x05\x05\x05\x05
STOCKR(-1)\x05 0.017797\x05 0.005626\x05 0.007951\x05-0.227769\x05 0.018220
\x05 (0.01370)\x05 (0.01832)\x05 (0.00434)\x05 (0.26890)\x05 (0.00593)
\x05[ 1.29922]\x05[ 0.30710]\x05[ 1.83077]\x05[-0.84705]\x05[ 3.07407]
\x05\x05\x05\x05\x05
DEBTR(-1)\x05 2.978284\x05 3.184275\x05 0.613127\x05-24.22021\x05 0.667766
\x05 (1.10657)\x05 (1.47995)\x05 (0.35083)\x05 (21.7220)\x05 (0.47880)
\x05[ 2.69145]\x05[ 2.15161]\x05[ 1.74766]\x05[-1.11501]\x05[ 1.39467]
\x05\x05\x05\x05\x05
C\x05 2.635758\x05 3.758983\x05-0.257541\x05 43.98076\x05-0.671091
\x05 (1.11127)\x05 (1.48622)\x05 (0.35231)\x05 (21.8141)\x05 (0.48083)
\x05[ 2.37185]\x05[ 2.52922]\x05[-0.73100]\x05[ 2.01616]\x05[-1.39569]
R-squared\x05 0.831463\x05 0.756979\x05 0.940896\x05 0.369095\x05 0.941414
Adj.R-squared\x05 0.771272\x05 0.670186\x05 0.919788\x05 0.143772\x05 0.920491
Sum sq.resids\x05 0.011868\x05 0.021228\x05 0.001193\x05 4.573258\x05 0.002222
S.E.equation\x05 0.029116\x05 0.038940\x05 0.009231\x05 0.571543\x05 0.012598
F-statistic\x05 13.81360\x05 8.721653\x05 44.57450\x05 1.638071\x05 44.99319
Log likelihood\x05 45.91748\x05 40.10268\x05 68.89207\x05-13.62371\x05 62.67229
Akaike AIC\x05-3.991748\x05-3.410268\x05-6.289207\x05 1.962371\x05-5.667229
Schwarz SC\x05-3.693028\x05-3.111548\x05-5.990487\x05 2.261090\x05-5.368509
Mean dependent\x05 4.650526\x05 4.742171\x05 0.047521\x05 0.299625\x05 0.063294
S.D.dependent\x05 0.060879\x05 0.067805\x05 0.032593\x05 0.617667\x05 0.044678
Determinant Residual Covariance\x05 8.07E-17\x05\x05\x05
Log Likelihood (d.f.adjusted)\x05 228.6684\x05\x05\x05
Akaike Information Criteria\x05-19.86684\x05\x05\x05
Schwarz Criteria\x05-18.37324
这是我做出来的VAR(向量自回归模型)的结果.看不太懂.着急哎.怎么看估计值显著不显著啊?不显著怎么办啊.Vector Autoregression EstimatesDate:05/08/12 Time:16:43Sample(adjusted):1991 2010Included observations:20 a
发现最近问计量的问题挺多.那我来试着回答一下:VAR模型建立的目的跟我们一般建立的单方程(单方程多元回归&时间序列)模型不太一样.首先 它不基于任何先验的理论 因此一般来说我们不分析一种变量对另一种变量的影响 而是分析某一误差(或者说冲击)对整个系统的影响(如果还记得线性代数 就可以知道变量之间的关系体现在矩阵里)这种方法叫做IRF——脉冲响应函数方法.其次 还可以考察误差变化的重要程度 叫做方差分解方法.基本上VAR模型都要进行这两个分析.回到你的问题 上面说了一大堆 就是没有说显著性的问题 是因为VAR模型里面显著性不那么重要 可以允许有几个不显著的 不会影响分析结果 顶多在文章后面说一说.所以这个结果里并没有显著性也是因为这样 给出的结果是系数和【】里面的t值.比起显著性 我觉得应该更加关注平稳性 不平稳可是不行的 具体就是对你这个序列进行单位根检验(ADF基本够了)确定序列都平稳再做 不平稳的话 差分 或者找协整.如果果真需要看看显著性才心安 那么咱也有法子 估计出这个大表以后 在prob里面找make system 然后随便选一个(by lag就是按照滞后阶数来排列你的变量就像这样a(-1)b(-1) by variance就是按照变量来排列 a(-1)a(-2)随便选不影响结果)然后得到一个大框里里面有好多式子 选prob 然后估计 直接用OLS就行 要用SUR也可以但影响不大 得到一个结果——你想要的.最后我想强调一点 我见过许多同学上来就问我 为啥不显著啊?怎么才能显著啊?其实显著性的问题是相对而言的 不是说越显著模型就做的越好(例如虚假回归 根本毫无意义 好比拿你的身高解释GDP)毕竟我们这门学科叫做计量经济学 一定要有经济原理作支撑才可以.建议读一读高铁梅老师的《建模》那本 推到少但是比较全 而且都有操作 这样可能做的会比较好 另外我上面的许多概念 如果不懂的话 尽管baidu 都有很清楚的答案~(P.S.别小看了VAR 2011经济学诺奖Sims能得到有一半都是因为发明了这玩意~)
不显著就换个模型做啊
同学,做出来后点view-representation,就直接出来模型了