已知数列{An}的通项An=(n+1)(10/11)^n,试问该数列有没有最大项,若有,求最大项和项数,并求Sn最小值.:∵an + 1 – an = (n+2)( 10/11 )^n+1 – (n+1) ( 10/11 )^n = ( 10/11 )^n*(9-n/11) ∴当n<9时,a n + 1 - an>0即a n +

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 19:20:15

已知数列{An}的通项An=(n+1)(10/11)^n,试问该数列有没有最大项,若有,求最大项和项数,并求Sn最小值.:∵an + 1 – an = (n+2)( 10/11 )^n+1 – (n+1) ( 10/11 )^n = ( 10/11 )^n*(9-n/11) ∴当n<9时,a n + 1 - an>0即a n +
已知数列{An}的通项An=(n+1)(10/11)^n,试问该数列有没有最大项,若有,求最大项和项数,并求Sn最小值.
:∵an + 1 – an = (n+2)( 10/11 )^n+1 – (n+1) ( 10/11 )^n = ( 10/11 )^n*(9-n/11)
∴当n<9时,a n + 1 - an>0即a n + 1 >a n ;
当n=9时a n + 1-a n=0,即a n + 1=an ,
当n>9时,a n + 1- an<0即a n + 1<a n ,
故a1<a2<……<a9 = a10>a11>a12>……,
∴数列{an}中最大项为a9或a10 ,
其值为10•( 10/11)9,其项数为9或10
∵an + 1 – an = (n+2)( 10/11 )^n+1 – (n+1) ( 10/11 )^n = ( 10/11 )^n*(9-n/11) 看这个试子
为什么 (n+2)( 10/11 )^n+1 – (n+1) ( 10/11 )^n = ( 10/11 )^n*(9-n/11)? 是怎么得来的 求详解

已知数列{An}的通项An=(n+1)(10/11)^n,试问该数列有没有最大项,若有,求最大项和项数,并求Sn最小值.:∵an + 1 – an = (n+2)( 10/11 )^n+1 – (n+1) ( 10/11 )^n = ( 10/11 )^n*(9-n/11) ∴当n<9时,a n + 1 - an>0即a n +
就好比2^5-2^4=2×2^4-2^4=(2-1)×2^4=2^4一样
(n+2)( 10/11 )^n+1 – (n+1) ( 10/11 )^n
把(10/11)^n去掉不管
还剩下(n+2)×10/11-(n+1),这个合并起来就是(9-n)/11