设椭圆X^2/a^2+y^2=1(a>b>0)上有点P(x1,y1)使角OPA=90度(A为长轴有顶点),求椭圆离心率范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:23:04

设椭圆X^2/a^2+y^2=1(a>b>0)上有点P(x1,y1)使角OPA=90度(A为长轴有顶点),求椭圆离心率范围
设椭圆X^2/a^2+y^2=1(a>b>0)上有点P(x1,y1)使角OPA=90度(A为长轴有顶点),求椭圆离心率范围

设椭圆X^2/a^2+y^2=1(a>b>0)上有点P(x1,y1)使角OPA=90度(A为长轴有顶点),求椭圆离心率范围
以(a/2 ,0)为圆心,a/2 为半径的圆和椭圆有交点.
(x -a/2)² + y² =a²/4
x²/a² + y² =1
(1- 1/a² )x² -ax +1 = 0
判别式≥0
a² ≥ 4 - 4/a²
a² = 1/(1-e²)
1/(1-e²)≥ 4 - 4(1-e²)
4(e²)² - 4e² +1 ≥0
0≤e≤1

设A,B分别为椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右顶点,(1,2/3)为椭圆上一点椭圆长半轴长等于焦距 求椭圆的方程 有关椭圆的数学题设椭圆x^2/a^2+y^2/b^2=1,a=2b,它与直线y=-x-1相交于A、B 两点,若OA⊥OB,求此椭圆方程 设A,B分别为椭圆x^2/a^2+y^2/b^2=1的左右顶点,设A,B分别为椭圆x^2/a^2+y^2/b^2=1的左右顶点(a>b>0),(1,3/2)为椭圆上一点,椭圆长半轴的长等于焦距(1)求椭圆的方程(2)设P(4,x)(x≠0),若直线AP,BP分别与 椭圆x^2/a^2+y^2/b^2=1(a>b>0),点P(√5a/5,√2a/2)在椭圆上设A为椭圆的右顶点,O为坐标原点设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线QO的斜率 离心率为黄金比(根号5-1)/2的椭圆称为“优美椭圆”,设x^2/a^2+y^2/b^2=1(a>B>0)是优美椭圆,F,A分别是 数学题:椭圆 抛物线已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一条准线方程x=9/根号5,且该椭圆上的点到右焦点的最近距离为3-根号5(1)求椭圆方程(2)设F1,F2是椭圆左右两焦点,A是椭圆与y轴负半轴的 一道椭圆的数学题.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若三角形ABF2是等腰直角三角形,则这个椭圆的离心率是?设椭圆方程为:x^2/a^2+y^2/b^2=1,a>b>0,则A、B坐 设椭圆C:x^2/a^2+y^2/b^2=1恒过定点(1,2),则椭圆的中心到准线的距离的最小值 设F1,F2是椭圆x^/a^2+y^/b^2=1的两个焦点,P是椭圆上任意一点,求PF1*PF2的最大值和最小值设F1,F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P是椭圆上任意一点,求PF1*PF2的最大值和最小值 关于高中椭圆的切线问题设椭圆方程为X^2/a^2 + Y^2/b^2 =1,试求过椭圆上一点P(x0,y0)的切线.x0x/a^2 + y0y/b^2 = 1 设椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两焦点为F1,F2,若在椭圆上存在一点P,使PF1⊥PF2,求椭圆离心率e的范围 设F1F2分别为椭圆C:x^/a^+y^/b^=1(a>b>0)的左右两焦点(1)求椭圆C的焦距(2)如果向量AF2=2向量F2B,求椭圆C的方程 设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点为F1F2,若椭圆上有一点M,使得F1PF2=120°,试求该椭圆的离心率设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点为F1,F2,若椭圆上有一点M,使得角F1PF2=120°,试求该椭圆的离 设A是椭圆x^2/a^2+y^2/b^2(a>b>0)长轴上的一个顶点,若椭圆上存在点P设A是椭圆x^2/a^2+y^2/b^2=1(a>b>0)长轴上的一个顶点,若椭圆上存在点P,使AP⊥OP,求椭圆离心率e的取值范围 设椭圆C:x^2/a^2+y^2/b^2=1,恒过定点A(1,2),求a^2/c最小值 关于过已知两点求椭圆方程问题按照老师所讲,已知两点求过两点椭圆方程时,需分类讨论:椭圆在x轴上时 设椭圆为x^2/a^2+y^2/b^2 此时a>b>0椭圆在y轴上时 设椭圆为x^2/b^2+y^2/a^2 此时仍a>b& 设F1F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点求第二问 椭圆B与椭圆A有相同焦点,已知一点,求椭圆B方程椭圆A:x^2/9+y^2/4=1(2,3)在椭圆B上 设x^2/9+y^2/4=λ.求具体解法.上课打盹,是否有“离心率相同”一说,忘了!