lim[1/(sinx)^2-(cosx)^2/x^2]此题为什么不能直接化为 lim[1/(sinx)^2-1/x^2]啊,就算第一步不化,第二部通分后x^2-(sinx)^2(cosx)^2也能化成x^2-(sinx)^2吧.化完的结果为1/3.与原答案4/3不一样.求大神指教.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 08:39:25
lim[1/(sinx)^2-(cosx)^2/x^2]此题为什么不能直接化为 lim[1/(sinx)^2-1/x^2]啊,就算第一步不化,第二部通分后x^2-(sinx)^2(cosx)^2也能化成x^2-(sinx)^2吧.化完的结果为1/3.与原答案4/3不一样.求大神指教.
lim[1/(sinx)^2-(cosx)^2/x^2]
此题为什么不能直接化为 lim[1/(sinx)^2-1/x^2]啊,就算第一步不化,第二部通分后x^2-(sinx)^2(cosx)^2也能化成x^2-(sinx)^2吧.化完的结果为1/3.与原答案4/3不一样.求大神指教.
lim[1/(sinx)^2-(cosx)^2/x^2]此题为什么不能直接化为 lim[1/(sinx)^2-1/x^2]啊,就算第一步不化,第二部通分后x^2-(sinx)^2(cosx)^2也能化成x^2-(sinx)^2吧.化完的结果为1/3.与原答案4/3不一样.求大神指教.
不能的,这样做的后果是丢失高阶无穷小,导致结果错误
通分后变成(x^2-Sin[x]^2Cos[x]^2)/x^2Sin[x]^2
分母的Sin[x]出现在乘除的位置,所以可以用x^2代替
可以写成(x^2-1/4 Sin[2x]^2)/x^4
然后应该用洛必达法则来计算,或者用Sin[x] ~ x - x^3/6来代换,如果用Sin[x]~x来代换,就会丢失高阶无穷小导致结果错误
lim((sqr(2)-sqr(1+cosx))/((sinx)^2)) x->0
x趋于0 lim sinx-tanx/x^3=lim sinx/x×(cosx-1)/(x^2×cosx)是怎么通分的?x趋于0 lim sinx-tanx/x^3=lim sinx/x×(cosx-1)/(x^2×cosx)thank you
请问高手 x趋近于0 lim (sinx-x*cosx)/(sinx)^3 能不能这样计算原式=lim sinx/(sinx)^3-lim (x*cosx)/(sinx)^3=lim 1/(sinx)^2-lim cosx/(sinx)^2=lim (1-cosx)/(sinx)^2=lim (x^2/2)/(x^2)=1/2,如果可以为何与利用麦克劳林公式所得
为什么lim sinx/(x-π) =lim cosx/1
lim {(cosx)^(1/2)-(cosx)^(1/3)}/ (sinx)^2 x趋近于0
lim {(cosx)^(1/2)-(cosx)^(1/3)}/ (sinx)^2 x趋近于0
求Lim(x→0)(sinx/x)^(cosx/1-cosx)
Lim,x-0,(1/sinx)*(1/x-cosx/sinx)=?
lim (2sinx+cosx)^(1/x) 求极限 x→0用e^ln(2sinx+cosx)^(1/x) =(2sinx+cosx)^(1/x) 求
lim(x->0)sinx/2+cosx/+1等于什么lim(x->0)sinx/2+cosx/2+1等于什么 有没有可能等于2x啊?
求极限,难难难,急如何求极限:(x→0)lim[(1+tanx)/(1+sinx)]^(1/x^3) 1.先取对数.2.利用洛必达法则,可以得到lim cosx*(1+sinx)/(cosx+sinx)*d((cosx+sinx)/(cosx*(1+sinx)))/dx/(3*x^2)3.进一步化简为lim (1-(cosx)^3+(sinx)^3)/(3*
在推导(cosX)'=-sinx lim {t-->0} [cosx*(cost-1)]/t + lim {t-->0} -(sinx*sint)/t在推导(cosX)'=-sinx lim {t-->0} [cosx*(cost-1)]/t + lim {t-->0} -(sinx*sint)/t由于cost-1等价于-(1/2)t^2sint等价于t,用等价无穷小替换:原式=lim {
lim(sinx-sin1)/x-1 x趋近于1 lim(根号2-根号下(1+cosx)/sin2x
求证:(1+sinx+cosx)/(1+sinx-cosx)-(1+sinx-cosx)/(1+sinx+cosx)=2/tanx
证明:2(cosx-sinx)/1+sinx+cosx=cosx/1+sinx-sinx/1+cosx
证明:【2(cosx-sinx)】/(1+sinx+cosx)=cosx/(1+sinx) -sinx/(1+cosx)
求证cosX/(1+sinx)-sinx/(1+cosx)=2(cosx-sinx)/(1+sinx+cosx)
求证:2(sinx-cosx)/(1+sinx+cosx)=sinx/(1+cosx)-cosx/(1+sinx)