求数列1/(3n-2)(3n+1)(3n+4)的前n项和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:37:51
求数列1/(3n-2)(3n+1)(3n+4)的前n项和
求数列1/(3n-2)(3n+1)(3n+4)的前n项和
求数列1/(3n-2)(3n+1)(3n+4)的前n项和
1/(3n-2)(3n+1)-1/(3n+1)(3n+4)=6/(3n-2)(3n+1)(3n+4)
于是1/(3n-2)(3n+1)(3n+4)=(1/6)[1/(3n-2)(3n+1)-1/(3n+1)(3n+4)]
于是1/1*4*7+1/4*7*11+……+1/(3n-2)(3n+1)(3n+4)
=(1/6)[1/1*4-1/4*7+1/4*7-1/7*11+……+1/(3n-2)(3n+1)-1/(3n+1)(3n+4)]
=(1/6)[1/4-1/(3n+1)(3n+4)]
=(3n²+5n)/8(3n+1)(3n+4)【类比1/n(n+1)=1/n-1/(n+1)裂项相消】
数列a(n)=n (n+1)(n+2)(n+3),求S(n)
数列a(n)=n (n+1)(n+2)(n+3), 求S(n)怎么用高中数列原理解答?
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
求数列 [(-2)^n+3^n]/[(-2)^(n+1)+3^(n+1)]的极限
求n项和数列极限,通式为i/(i+n)就是n->无穷,1/(n+1)+2/(n+2)+3/(n+3)+...+n/2n;
数列n+(n^2+n^3)^(1/3)的极限
已知b(n)=3/(2n+1)*(2n-1)求数列{b(n)}前n项的和
已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn
求数列an=n(n+1) 的前n项和 到 an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项)
数列bn=3^n/(3^n+2)[3^(n+1)+2],求Tn
数列an,an=(2n-1)+1/【3n(n+1)】,求Sn
求数列(3n-1)*2^(n-1)的前n项和Sn
求数列2n+1*3^(n-1)的前n项和
求数列1/2,2/4,3/8...n/n^2的前n项和
求数列{2的n次方分之1+3n-2}前n项的和.
求数列{(2n-1)*3^n}的前n项和
求数列4,9,16,.,3n-1+2^n,.前n项的和Sn
求数列2n+1/3^n的前n项和