计算(1+1/x)÷(2x-1+x²/x) 2x/x²-9+1/3-x+x+2/x+381ab²×(abc)^4÷(-9a²b^3c)÷[3(abc)^3]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:22:55

计算(1+1/x)÷(2x-1+x²/x) 2x/x²-9+1/3-x+x+2/x+381ab²×(abc)^4÷(-9a²b^3c)÷[3(abc)^3]
计算(1+1/x)÷(2x-1+x²/x) 2x/x²-9+1/3-x+x+2/x+3
81ab²×(abc)^4÷(-9a²b^3c)÷[3(abc)^3]

计算(1+1/x)÷(2x-1+x²/x) 2x/x²-9+1/3-x+x+2/x+381ab²×(abc)^4÷(-9a²b^3c)÷[3(abc)^3]
(1+1/x)÷(2x-1+x²/x)
=(1+x)/x ÷(2x²-1-x²)/x
=(1+x)÷(x²-1)
=(1+x)÷(x+1)(x-1)
=1/(x-1)
2x/x²-9+1/3-x+x+2/x+3
=2x/(x-3)(x+3) -1/(x-3) +(x+2)/(x+3)
=[2x-(x+3)+(x+2)]/(x-3)(x+3)
=[2x-x-3+x+2]/(x-3)(x+3)
=(2x-1)/(x-3)(x+3)
81ab²×(abc)^4÷(-9a²b^3c)÷[3(abc)^3]
=81ab²×(a^4b^4c^4)÷(-9a²b^3c)÷[3(a^3b^3c^3)]
=81a^5b^6c^4÷(-27a^5b^6c^4)
=-3