设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明(1):a1能由a2,a3线性表示 (2):a4不能由a1,a2,a3线示

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 03:45:46

设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明(1):a1能由a2,a3线性表示 (2):a4不能由a1,a2,a3线示
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明(1):a1能由a2,a3线性表示 (2):a4不能由a1,a2,a3线示

设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明(1):a1能由a2,a3线性表示 (2):a4不能由a1,a2,a3线示
(1)向量组a2,a3,a4线性无关,说明a2,a3,也线性无关;
又因为向量组a1,a2,a3线性相关,所以a1能由a2,a3线性表示
(2)假如a4能由a1,a2,a3线性表示,则由于a1能由a2,a3线性表示
得到a4能由a2,a3线性表示,从而a2,a3,a4线性相关,与已知矛盾,
所以a4不能由a1,a2,a3线性表示
如果基础不太好,可以看看下面的答案,关于第一个问的,我引用的
由已知说明向量组a1,a2,a3,a4线性相关;
即存在不全为0的4个数k1,k2,k3,k4使得k1*a1+k2*a2+k3*a3+k4*a4=0(k1,k2,k3,k4为系数)
又因为a4不能由a1,a2,a3线性表示,所以不存在如下的等式关系:
a4=c1*a1+c2*a2+c3*a3(c1,c2,c3为系数)
由上面第一个等式知:k1*a1+k2*a2+k3*a3+k4*a4=0
由上面第二条件知:a4=c1*a1+c2*a2+c3*a3(不成立)
从第一个等式中知要使第二个条件成立,只有k4=0;如果k4≠0的话,那么经 过移项,可变成a4=c1*a1+c2*a2+c3*a3,这就产生了矛盾.
故在第1式中只有k4=0;
这样就有k1*a1+k2*a2+k3*a3=0;(k1,k2,k3不全为0),故向量组a1a2a3线性相关

线性代数 设向量组a1a2 a3线性无关 证明向量组a1-a2 a2-a3 a3-a1线性相关 向量组a1a2a3线性相关,则向量组a1+a2,a2+a3,a3+a1线性相关 设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明a1能由a2,a3线性表示 证明题目设向量组a1,a2,a3线性无关,证明向量组a1+2a3,a2-a3,a1+2a2 线性相关 帮忙一下, 设向量组a1a2a3线性无关,怎么证明a1-a2,a2=a3,a3-a1线性相关 证明向量组线性相关设向量组.,a1,a2,a3 ,线性相关,并设b1=a1+a2,b2=a1-2a2,b3=a1+a2+a3证明:向量组,b1.b2.b3,线性相关 设b1=a1,b2=a1+a2,b3=a1+a2+a3,且向量组a1,a2,a3线性无关,判断向量组是否线性相关? 设向量组a1,a2,a3,a4线性相关,a4不能由a1,a2,a3线性表示,证明:向量组a1a2a3线性相关. 设向量组a1,a2,a3线性无关,如果向量组a2+ta1,a3-a2,a1+a3线性相关,则t的值为 设向量a1,a2,a3线性相关,证明:向量a1+a2,a2+a3,a1+a3 线性相关 线性相关性设向量组a1,a2,a3线性无关,向量B1可由a1,a2,a3线性表示,而向量B2不能由a1,a2,a3线性表示,则对于任意常数k,必有A.a1,a2,a3,kB+B2线性无关 B.a1,a2,a3,kB+B2线性相关C.a1,a2,a3,B1+kB线性无关 D.a1,a2,a3, 设向量组a1,a2,a3,线性无关.证明:向量组a1+a2+a3,a2+a3,a3也线性无关 设向量组a1,a2,a3线性无关,试证b1=a2-a1,b2=a3-a2,b3=a1-a3线性相关 设向量组a1,a2,a3线性无关,试证b1=a2-a1,b2=a3-a2,b3=a1-a3线性相关 设向量组a1,a2,a3线性无关.证明向量组a1+a3,a2+a3,a3也与线性无关. 求证线性相关证明题(两题)1、设向量组a1,a2,a3,a4线性相关,a2,a3,a4线性无关,并且a5可由向量组a1,a2,a3线性表示.证明:向量组的秩R(a1,a2,a3,a4,a5)=32、设向量组a1,a2,a3,a4线性无关,且是非其次线性 设向量组a1,a2,a3,a4线性相关,a1,a2,a3线性无关,a5能由a1,a2,a3,a4线性表示证明: 向量组a1,a2,a3,a4,a5的秩为3. 若向量组a1 a2 a3 线性无关,求a1+a2,a2+a3,a3-a1线性相关