X=a/b+c Y=b/c+a Z=c/a+b求证 x/1+x + y/1+y + z/1+z=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:34:58

X=a/b+c Y=b/c+a Z=c/a+b求证 x/1+x + y/1+y + z/1+z=1
X=a/b+c Y=b/c+a Z=c/a+b
求证 x/1+x + y/1+y + z/1+z=1

X=a/b+c Y=b/c+a Z=c/a+b求证 x/1+x + y/1+y + z/1+z=1
∵x=a/(b+c),y=b/(c+a),z=c/(a+b).
∴以上各等式变形为:
1/x=(b+c)/a=〔(a+b+c)/a〕-1 ,
1/y=(c+a)/b=〔(a+b+c)/b〕-1 ,
1/z=(a+b)/c=〔(a+b+c)/c〕-1,(分数的拆分)
∴继续向所求变形:(1/x)+1=(1+x)/x=(a+b+c)/a,→x/(1+x)=a/(a+b+c).
同理:y/(1+y)=b/(a+b+c),z/(1+z)=c/(a+b+c).
∴x/(1+x)+y/(1+y)+z/(1+z)
=a/(a+b+c)+b/(a+b+c)+c/(a+b+c)
=(a+b+c)/(a+b+c)
=1.