F1,F2是双曲线x*2/4a*2-y*2/a*2=1(a>0)的两个焦点,P为双曲线上一点,且∠F1PF2=90°△F1PF2的面积为4,则a的值为?答案是a=2请问过程和思路?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:52:57

F1,F2是双曲线x*2/4a*2-y*2/a*2=1(a>0)的两个焦点,P为双曲线上一点,且∠F1PF2=90°△F1PF2的面积为4,则a的值为?答案是a=2请问过程和思路?
F1,F2是双曲线x*2/4a*2-y*2/a*2=1(a>0)的两个焦点,P为双曲线上一点,且∠F1PF2=90°△F1PF2的面积为4,则a的值为?
答案是a=2
请问过程和思路?

F1,F2是双曲线x*2/4a*2-y*2/a*2=1(a>0)的两个焦点,P为双曲线上一点,且∠F1PF2=90°△F1PF2的面积为4,则a的值为?答案是a=2请问过程和思路?
双曲线c^2=4a^2+a^2=5a^2
PF1-PF2=2*2a=4a
1/2*PF1*PF2=4 PF1*PF2=8
直角三角形F1PF2中,PF1^2+PF2^2=F1F2^2=4c^2=20a^2
PF1^2+PF2^2-2PF1*PF2+2PF1*PF2=20a^2
(PF1-PF2)^2+2PF1*PF2=20a^2
16a^2+2*8=20a^2
16=4a^2
a^2=4
a=2

r1^2+r2^2=20a^2
r1-r2=4a
2式平方减1式得r1*r2
还有公式
b^2cot((∠F1PF2)/2)=S
公式呀

已知双曲线的两焦点分别为F1,F2,其中F1是抛物线y^2=4*x的焦点,点A(-1,2),B(3,2)在双曲线上,求F2轨迹 已知双曲线的两焦点分别为F1,F2,其中F1是抛物线y^2=4*x的焦点,点A(-1,2),B(3,2)在双曲线上,求F2的轨迹? 一道高中双曲线题 急!F1,F2是双曲线X^2/4 - Y^2 = 1(a>0,b>0)的两个焦点.P在双曲线上.当F1 P F2的面积为1时,向量P F1*向量P F2的值为()A.0 B.1 C.1/2 D.2要详细的解答步骤.谢谢了~ P为双曲线(x^2)/(a^2)-(y^2)/(b^2)上任意一点,F1,F2是双曲线的焦点,从F1作角F1PF2的角平分线的垂线...P为双曲线(x^2)/(a^2)-(y^2)/(b^2)上任意一点,F1,F2是双曲线的焦点,从F1作角F1PF2的角平分线的垂线,垂足 已知双曲线x^2/9-y^2=1的两个焦点为F1,F2,A是双曲线上一点,且|AF1|=5则|AF2|=多少 设f1,和f2为双曲线x^2/a^2-y^2/b^2=1的两个焦点,若f1,f2,p(0,2b)是正三角形的三个顶点,则双曲线的离心率为 F1,F2 是双曲线的焦点若双曲线右支存在P点满足|PF2|=|F1F2|F1,F2 是双曲线x^2/a^2-y^2/b^2=1的焦点,若双曲线右支存在P点,满足|PF2|=|F1F2|且PF1与圆x^2+y^2=a^2相切 ,则该双曲线的渐近线方程为4x±3y=0 设F1和F3为双曲线的平方/a的平方-y的平方/b的平方=1的两个焦点,若F1.F2.P(0,2b)是正三角形的三个顶点,则双设F1和F2为双曲线(x平方除以a平方)-(y平方除以b平方)(a>0,b>0)的两个焦点,若F1.F2.P(0, F1,F2 是双曲线的焦点若双曲线右支存在P点满足|PF2|=|F1F2|且F1与圆x^2+y^2=a^2F1,F2 是双曲线x^2/a^2-y^2/b^2=1的焦点,若双曲线右支存在P点,满足|PF2|=|F1F2|且F1与圆x^2+y^2=a^2相切 ,则该双曲线的渐近线方程 一道双曲线题目已知双曲线 x^2/a^2 - y^2/b^2 =1 左右焦点分别为F1 、F2,过点F2作与x轴垂直的直线于双曲线一个交点为P,且角P F1 F2=30°,则双曲线的渐进线方程为_____要具体的过程 答案是±√2x 设F1,F2是双曲线x^2/4a-y^2/a=1(a>0)的两个焦点,P在双曲线上F19F2=90°,若Rt△F1PF2的面积等于1,则实数a= 双曲线x^2/a^2-y^2/b^2=1的两个焦点F1,F2,弦AB过F1且在双曲线的一支上,|F1|+|F2|=2|AB|,则|AB|等于答案是4a,能帮我解释一下吗?怎么得来的啊 ? 设O为坐标原点,F1,F2是双曲线 x^2/a^2-y^2/x^2=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1 设O为坐标原点,F1,F2是双曲线 x^2/a^2-y^2/x^2=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,PQ是经过F1且垂直于x轴的双曲线的弦 角PF2Q=90度,求离心率 设f1f2和f2为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的两焦点,若f1、f2、p(0,2b)是正三角形的三个顶点,则双曲线离心率是? 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P且角F1PF2=60已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P,且角F1PF2 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P且角F1PF2=60已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P,且角F1PF2