设f(x)在[a,b]上连续,且f(a)b,试证:在(a,b)内至少有一点P,使得f(P)=P.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:58:11
设f(x)在[a,b]上连续,且f(a)b,试证:在(a,b)内至少有一点P,使得f(P)=P.
设f(x)在[a,b]上连续,且f(a)b,试证:在(a,b)内至少有一点P,使得f(P)=P.
设f(x)在[a,b]上连续,且f(a)b,试证:在(a,b)内至少有一点P,使得f(P)=P.
构造新函数F(x)=f(x)-a,由题意知此函数在[a,b]上连续
因为f(a)0
由零点存在性定理得在(a,b)内至少有一点P,使得F(p)=0
即f(P)=P
令F(x)=f(x)-x则F(a)F(b)<0.且F(x)在[a,b]上连续
y由零点定理,结论成立
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
设函数f(x)在[a,b]上连续,在(a,b)上可导且f'(x)
设函数f(x),g(x)在区间[a,b]上连续,且f(a)
证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续.
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
设f(x) 在[a,b] 上连续,且f(x)>0.求证:∫(a,b)f(x)dx*∫(a,bdx/f(x)≥(b-a)^2.
设函数f(x)在[a,b]上连续,a
设f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,a
设f(x)在[a,b]上连续,且没有零点,证明f(x)在[a,b]上保号
设f(x)在闭区间(a,b)上连续,且a
设函数f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,在(a,b)内有二阶导数,且有f(a)=f(b)=0,f(c)>0(a
设f'(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=0,f(c)>0,a