设集合A={x|x^2+2x-3>0},集合B={x|x^2-2ax-10}若A交B恰含有一个整数,则实数a取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:43:22

设集合A={x|x^2+2x-3>0},集合B={x|x^2-2ax-10}若A交B恰含有一个整数,则实数a取值范围
设集合A={x|x^2+2x-3>0},集合B={x|x^2-2ax-10}若A交B恰含有一个整数,则实数a取值范围

设集合A={x|x^2+2x-3>0},集合B={x|x^2-2ax-10}若A交B恰含有一个整数,则实数a取值范围
x^2+2x-3>0
(x+3)(x-1)>0
x>1或x<-3
x^2-2ax-10
(x-a)^2≤a²+1
a-根号(a²+1)≤x≤a+根号(a²+1)
因为a>0,则[a-根号(a²+1)]²=2a²+1-2a根号(a²+1)<2a²+1-2a²=1
所以a-根号-1<x≤a+根号(a²+1)
因此A交B交集满足1

解A得x>1或x<-3
的那个整数为2或-4
分别带入B中解不等式
得a<=-5/8
或a>=3/4