已知xyz=1,x+y+z=2,x^3+y^3+z^3=3,求1/xy+z-1+1/yz+x-1+1/zx+y-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:21:00

已知xyz=1,x+y+z=2,x^3+y^3+z^3=3,求1/xy+z-1+1/yz+x-1+1/zx+y-1
已知xyz=1,x+y+z=2,x^3+y^3+z^3=3,求1/xy+z-1+1/yz+x-1+1/zx+y-1

已知xyz=1,x+y+z=2,x^3+y^3+z^3=3,求1/xy+z-1+1/yz+x-1+1/zx+y-1
由已知条件:
x+y+z=2
x^2+y^2+z^2=3
所以xy+yz+zx=(1/2)[(x+y+z)^2-(x^2+y^2+z^2)]=1/2
又因为左式第一项
1/(xy+z-1)=1/[xy+(2-x-y)-1]=1/[(x-1)(y-1)]
同理
1/(yz+x-1)=1/[(y-1)(z-1)]
1/(zx+y-1)=1/[(z-1)(x-1)]
三式相加(此时通分便很简单)得:
(3-x-y-z)/[(1-x)(1-y)(1-z)]
1/[(1-x)(1-y)(1-z)]
=1/(1-x-y-z+xy+yz+zx-xyz)
=1/(1-2+1/2-1)
=-2/3

1/xy+z-1+1/yz+x-1+1/zx+y-1
=z/xyz+x/xyz+y/xyz+(x+y+z)-3
=(x+y+z)/(xyz)+2-3
=2/1+2-3
=2+2-3
=1