三角形ABC中角ABC所对的边分别为abc且acosC+1/2c=b 求角A的大小若a=1,求三角形ABC周长L的范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:42:02

三角形ABC中角ABC所对的边分别为abc且acosC+1/2c=b 求角A的大小若a=1,求三角形ABC周长L的范围
三角形ABC中角ABC所对的边分别为abc且acosC+1/2c=b 求角A的大小
若a=1,求三角形ABC周长L的范围

三角形ABC中角ABC所对的边分别为abc且acosC+1/2c=b 求角A的大小若a=1,求三角形ABC周长L的范围
(1)∵accosC+1/2c=b,由正弦定理得2RsinAcosC+1/2
2RsinC=2RsinB,即sinAcosC+1/2sinC=sinB,
又∵sinB=sin(A+C)=sinAcosC+cosAsinC,
∴1/2sinC=cosAsinC,
∵sinC≠0,
∴cosA=1/2 ,
又∵0<A<π,
∴A=π/3.
(2)由正弦定理得:b=asinB/sinA=2sinB/√3 ,c=2sinC/√3 ,
∴l=a+b+c=1+2/√3(sinB+sinC)=1+ 2/√3(sinB+sin(A+B))
=1+2(√3/2sinB+1/2cosB)=1+2sin(B+π/6),∵A=π/3 ,
∴B∈(0,2π/3),∴B+ π/6∈(π/6,5π/6),
∴sin(B+π/6)∈(1/2,1],
故△ABC的周长l的取值范围为(2,3].
好难输啊,记得采纳哦,若不懂,

由余弦定理得
a*(a^2+b^2-c^2)/2ab+1/2c=b
b^2+c^2-a^2=bc
因cosA=(b^2+c^2-a^2)/2bc=bc/2bc=1/2
A=60°
a=1,b^2+c^2-a^2=bc
a=1,sinA=√3/2 B+C=120°,C=120°-B,
a/sinA=b/inB=C/sinC=2√3/3<...

全部展开

由余弦定理得
a*(a^2+b^2-c^2)/2ab+1/2c=b
b^2+c^2-a^2=bc
因cosA=(b^2+c^2-a^2)/2bc=bc/2bc=1/2
A=60°
a=1,b^2+c^2-a^2=bc
a=1,sinA=√3/2 B+C=120°,C=120°-B,
a/sinA=b/inB=C/sinC=2√3/3
即b=2√3/3sinB,C=2√3/3sin(120°-B)
则△ABC的周长l=a+b+c=1+2√3/3sinB+2√3/3sin(120°-B)
=1+2√3/3(3/2sinB+√3/2cosB)
=1+2(√3/2sinB+√1/2cosB)
=1+2sin(B+30°)
0<B<120°,30°<B+30°<150°
1/2则L范围为(2,3].

收起

在三角形abc中,角abc的对边分别为abc,若AB 判断三角形的形状 在三角形ABC中,三个内角ABC所对的边分别为abc,且ABC成等差数列,abc成等比数列 证明三角形ABC为正三角形 在三角形ABC中,三个内角ABC所对的边分别为abc,且ABC成等差数列,abc成等比数列 证明三角形ABC为正三角形 在三角形ABC中,三个内角ABC所对的边分别为abc,且ABC成等差数列,abc成等比数列 证明三角形ABC为正三角形 三角形ABC中,abc分别为ABC所对的边,如果abc成等差数列,B=30°,三角形ABC面积为3/2 ,b等于? 三角形ABC中,角ABC所对的边分别为abc,且a=1,B=45°,三角形面积为2,求b 在三角形ABC中,角ABC所对边为abc,求证三角形为等边三角形的充要条件是a²+b²+c²=ab+bc+ca 在三角形ABC中,abc分别为角ABC的对边.如下图. 在三角形ABC中,角ABC所对的边分别为abc,若B=120º,b=根号13,a+c等于4,求三角形ABC的面积在三角形ABC中,角ABC所对的边分别为abc,若B=120º,b=根号13,a+c等于4,求三角形ABC的面积 三角形abc中,角abc所对的边分别为abc,且满足cos(A/2)=(2根号5)除以5,向量abX向量ac=3.三角形abc中,角ABC所对的边分别为abc,且满足cos(A/2)=(2根号5)除以5,向量ab乘以向量ac=3.1)求三角形abc的 在三角形abc中,AB为锐角,角ABC所对的边分别为abc 且sinA=根号2/2 sinB=1/2 (1)求sin(A+B);若a=2求 b,c 在三角形ABC中,角ABC所对的边分别为abc,若C等于2B,则b分之c为? 三角形ABC中,角AB,C所对的边分别为a,b,c,若acosA=bsinB,则sinAcosA+(cosB)^2= 在三角形ABC中,角ABC所对的边分别为abc,且满足ccosA=acosC,(1)求角C的大小 在三角形ABC中,角ABC所对的边分别为abc,且满足csinA=acosC.求角C的大小? 在三角形ABC中 角ABC所对的边分别为abc 若c =根号3a B= 30°求∠c 在三角形ABC中,角ABC所对的边分别为abc,求证:a^2 -b^2/c^2=Sin(A+B)/SinC 在三角形ABC中,sinA=tanB,a=b(1+cosA).其中角ABC所对的边分别为abc,求证:A=C