计算:1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+...+1/(x+2009)(x+2010)=1/2x+4020

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:16:45

计算:1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+...+1/(x+2009)(x+2010)=1/2x+4020
计算:1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+...+1/(x+2009)(x+2010)=1/2x+4020

计算:1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+...+1/(x+2009)(x+2010)=1/2x+4020
应该是1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+...+1/(x+2009)(x+2010)=1/(2x+4020 )吧
1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)+...+1/(x+2009)-1/(x+2010)=1/(2x+4020)
1/(x+1)-1/(x+2010)=1/[2(x+2010)]
2009/(x+1)(x+2010)=1/[2(x+2010)]
2009/(x+1)=1/2
x=4017

原方程可以写成; 1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4).....+1/(x+2009)-1/(x+2010)=1/2x+4020
1/(x+1)-1/(x+2010)=1/2x+4020
剩下的自己算 如果还有其他问题请。。。