F1、F2是双曲线y^2/9-x^16=1的两个焦点,M是双曲线上一点,且|MF1|·|MF2|=32,求三角形△F1MF2的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:47:49
F1、F2是双曲线y^2/9-x^16=1的两个焦点,M是双曲线上一点,且|MF1|·|MF2|=32,求三角形△F1MF2的面积
F1、F2是双曲线y^2/9-x^16=1的两个焦点,M是双曲线上一点,且|MF1|·|MF2|=32,求三角形△F1MF2的面积
F1、F2是双曲线y^2/9-x^16=1的两个焦点,M是双曲线上一点,且|MF1|·|MF2|=32,求三角形△F1MF2的面积
设MF1=m,MF2=n
F1F2=10
设∠F1MF2=θ
余弦定理:
10²=m²+n²-2mncosθ
100=(m-n)²+2mn-2mncosθ
100=(m-n)²+2mn(1-cosθ)
根据双曲线定义|m-n|=2a=6,mn=|MF1|·|MF2|=32
100=6²+2×32×(1-cosθ)
1-cosθ=1
cosθ=0
θ=π/2
∴S△F1MF2=1/2·|MF1|·|MF2|=1/2×32=16
F1,F2是双曲线x^2/16-y^2/20=1的焦点,点P在双曲线上,若P到F1的距离是9,求P到F2的距离、、求过程、谢谢、、
双曲线x^2/16-y^2/9=1上有点P,F1,F2是双曲线的焦点 且∠F1PF2=π/3,求△PF1F2面积
已知双曲线16x^2-9y^2=144,F1,F2是两个焦点P在双曲线上且|pF1|*|PF2|=32求角P1PF2
F1 F2是双曲线x^2/16-y^2/20=1的焦点,P在双曲线上,若|PF1|=9,求|PF2|?
双曲线数学题1.已知双曲线的方程是16x²-9y²=144设F1,F2是双曲线的左右焦点,点P在双曲线上,且|PF1||PF2|=32求角F1PF2的大小2.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为根号2,且过
已知F1,F2是双曲线x^2 /16 - y^2 /9=1的两个焦点,P为双曲线上一点,已知F1、F2是双曲线x^2 /16 - y^2 /9=1的两个焦点,P为双曲线上一点,且有PF1⊥PF2.求△PF1F2的面积
已知F1,F2是双曲线x^2/16-y^2/9=1的焦点,PQ是过焦点的弦已知F1,F2是双曲线x^2/16-y^2/9=1的左右两个焦点,PQ是过焦点F1的弦,求|PF2|+|QF2|-|PQ|的值.
F1、F2是双曲线x平方/9-y平方/16=1的两个焦点,P在双曲线上且满足|PF1|.|PF2|=32,则角F1PF2=
F1、F2是双曲线x平方/9-y平方/16=1的两个焦点,P在双曲线上且满足|PF1|.|PF2|=32,则角F1PF2=
已知双曲线x^2/9-y^2=1的两个焦点为F1,F2,A是双曲线上一点,且|AF1|=5则|AF2|=多少
1.已知F1、F2是双曲线x^2/16-y^2/9=1(m>n>0)的两个焦点,PQ是过F1的弦,且PQ的倾倾斜角a那么[PF2]+[QF2]-[PQ]的值是?注[]表示绝对值,2.F1,F2是双曲线y^2/25-x^2/11=1R的两个焦点,点P在双曲线上,G是PF的中点,且角F1
p是双曲线x^2/9-y^2/16=1上一点,F1,F2是双曲线焦点若F1pF2=90度 求p到x轴的距离
双曲线 已知P为双曲线 上一点,F1、F2为它的左右两个焦点,PQ是∠F1PF2的角平分线,过点F1作PQ的垂线,垂已知P为双曲线x^2/9-y^2=1上一点,F1、F2为它的左右两个焦点,PQ是∠F1PF2的角平分线,过点F1
双曲线 已知P为双曲线 上一点,F1、F2为它的左右两个焦点,PQ是∠F1PF2的角平分线,过点F1作PQ的垂线,垂已知P为双曲线x^2/9-y^2=1上一点,F1、F2为它的左右两个焦点,PQ是∠F1PF2的角平分线,过点F1作PQ的
F1、F2是双曲线x^2/16-y^2/9=1的焦点,点P在双曲线上,若点P到焦点F1的距离等于则求P到F2的距离P到F1距离等于16
双曲线9x^2-16^2=144的两焦点为F1和F2,P是该双曲线上一点,如果P到F1的距离为4,那么P到F2的距离为
点P是双曲线x^2/16-Y^2/20=1上一点,F1,F2是双曲线的两个焦点,且|PF1|=9,在|PF2|=多少
F1、F2是双曲线x^2/9-y^2/16=1的焦点,P是双曲线上一点,且∠F1PF2=60°,求△F1PF2的面积.