已知x,y为实数,且满足2x²-6x+y²=0,求x²+y²+2x的最大值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:43:56
已知x,y为实数,且满足2x²-6x+y²=0,求x²+y²+2x的最大值
已知x,y为实数,且满足2x²-6x+y²=0,求x²+y²+2x的最大值
已知x,y为实数,且满足2x²-6x+y²=0,求x²+y²+2x的最大值
即y=-2x²+6x≥0
所以2x(x-3)≤0
0≤x≤3
所以原式=x²+(-2x²+6x)+2x
=-x²+8x
=-(x-4)²+16
所以x=3
最大值是15