试求(2+1)*(2^2+1)(2^4+1)…(2^32+1)+1的个位数字
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:41:09
试求(2+1)*(2^2+1)(2^4+1)…(2^32+1)+1的个位数字
试求(2+1)*(2^2+1)(2^4+1)…(2^32+1)+1的个位数字
试求(2+1)*(2^2+1)(2^4+1)…(2^32+1)+1的个位数字
由于2²+1=5
我们知道,一个能被5整除的数其末尾必然是0或者5而(2+1)*(2^2+1)(2^4+1)…(2^32+1)是能被5整除的,并且必然为一个奇数,所以末尾必然是5
那么(2+1)*(2^2+1)(2^4+1)…(2^32+1)+1的个位数字比为6
写出前几项
3*5*7*17*65。。。。
那么尾数 明显就是5+1=6