x,y为实数,试比较x²-xy+y²与x+y-1的大小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:43:21
x,y为实数,试比较x²-xy+y²与x+y-1的大小
x,y为实数,试比较x²-xy+y²与x+y-1的大小
x,y为实数,试比较x²-xy+y²与x+y-1的大小
(x²-xy+y²)-(x+y-1)
=[x²-xy+y²+x²-xy+y²-2(x+y-1)]/2
=[(x²-2x+1)+(y²-2y+1)+(x²+y²-2xy)]/2
=[(x-1)²+(y-1)²+(x-y)²]/2≥0
所以 (x²-xy+y²)-(x+y-1)≥0
即 x²-xy+y²≥x+y-1
答:
x和y是实数
x^2-xy+y^2-(x+y-1)
=(1/2)*(2x^2-2xy+2y^2-2x-2y+2)
=(1/2)(x^2-2xy+y^2+x^2-2x+1+y^2-2y+1)
=(1/2)*[(x-y)^2+(x-1)^2+(y-1)^2]
>=0
所以:
x^2-xy+y^2>=x+y-1