已知f(x)=(ax2+1)/(bx+c) (a,b,c属于z)是奇函数,且f(1)=2,f(2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 10:03:25

已知f(x)=(ax2+1)/(bx+c) (a,b,c属于z)是奇函数,且f(1)=2,f(2)
已知f(x)=(ax2+1)/(bx+c) (a,b,c属于z)是奇函数,且f(1)=2,f(2)

已知f(x)=(ax2+1)/(bx+c) (a,b,c属于z)是奇函数,且f(1)=2,f(2)
f(x)=(ax^2+1)/(bx+c)
因为f(x)为奇函数
∴f(-x)=-f(x)
f(-x)=(ax^2+1)/(-bx+c)
-f(x)=-(ax^2+1)/(bx+c)
∵分子上ax^2+1=ax^2+1
所以bx+c=bx-c
c=0
f(1)=2
所以a+1=2b
a=2b-1
f(2)