在边长为a的菱形ABCD中,∠DAB=60°,E是AD上异于A,D两点的动点,F是CD上的动点,满足AE+CF=a1.求证:△BDE≌△BCF2.证明:不论E、F怎样移动,△BEF总是等边三角形;3.设△BEF的面积为S,求S的取值范围.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:43:50

在边长为a的菱形ABCD中,∠DAB=60°,E是AD上异于A,D两点的动点,F是CD上的动点,满足AE+CF=a1.求证:△BDE≌△BCF2.证明:不论E、F怎样移动,△BEF总是等边三角形;3.设△BEF的面积为S,求S的取值范围.
在边长为a的菱形ABCD中,∠DAB=60°,E是AD上异于A,D两点的动点,F是CD上的动点,满足AE+CF=a
1.求证:△BDE≌△BCF
2.证明:不论E、F怎样移动,△BEF总是等边三角形;
3.设△BEF的面积为S,求S的取值范围.

在边长为a的菱形ABCD中,∠DAB=60°,E是AD上异于A,D两点的动点,F是CD上的动点,满足AE+CF=a1.求证:△BDE≌△BCF2.证明:不论E、F怎样移动,△BEF总是等边三角形;3.设△BEF的面积为S,求S的取值范围.
1、连接BD
∵菱形ABCD,∠DAB=60°
∴BD=AB=BC,∠ADB=∠DCB=60°
∵AE+CF=a,AD=CD=a
∴DE=CF
∴△BDE≌△BCF
2、∵△BDE≌△BCF
∴BE=BF,∠DBE=∠CBF
∴∠EBF=∠ABD=60°
∴△BEF总是等边三角形
3、√3/2AB≤BE√3/2a≤BES=√3/4*BE²
∴3√3/16*a²≤S<√3/4*a²

在菱形ABCD中,角DAB=60°,AC=3√3,则菱形ABCD的边长为? 在菱形ABCD中,∠DAB=120°,已知它的一条对角线长为12cm,则菱形ABCD的边长为 如图,在边长为2A的菱形ABCD中,∠DAB=60°,E是AD上不同于A,D两点的一动点 如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.求二面角A-BC-P的大小. 如图,在边长为6的菱形ABCD中,∠DAB=60°,E为AB的中点,F为AC上一动点,求EF+BF的最小值 如图,在边长为M的菱形ABCD中,角DAB=60度,E是AD上不同于 在边长为6的菱形ABCD中,角DAB=60°,E为AB中点,F是AC上一动点,求EF+BF的最小值 在边长6的菱形ABCD中,角DAB=60°,点E为AB中点,F是AC上一动点,求EF+BF的最小值. 如图所示在边长为2a的菱形ABCD中,∠DAB=60°,E是AD上不同于A,D两点的一动点,F是CD上一动点,且AE+CF=2a 如图所示,在边长为m的菱形ABCD中,∠DAB=60°,E是AD上不同于A、D两点的一动点,F是CD上一动点且AE+CD=m 在边长为6的菱形ABCD中,∠DAB=60°,E为AB的中点,F为AC上一动点,求EF+BF的最小值(要解释,) 如图,在边长为6的菱形ABCD中,∠DAB=60°,点E为AB中点,点E为AC上一个动点,求EF+BF最小值 如图所示,在边长为m的菱形ABCD中,∠DAB=60°,E是AD上不同于A、D两点的一动点,F是CD上一动点且AE+CD=m如图所示,在边长为m的菱形ABCD中,∠DAB=60°,E是AD上不同于A、D两点的一动点,F是CD上一动点且AE+CF=m 如图,在边长为6的菱形ABCD中,角DAB=60°,点E为AB的中点,点F是AC上的一动点,求EF+BF的最小值 特殊的平行四边形在边长为6的菱形ABCD中,∠DAB=60°,E为AB的中点,F是AC上一动点,求EF+BF的最小值 已知菱形ABCD的边长为5,∠DAB=60°,将菱形ABCD绕着点A逆时针旋转得到菱形将菱形ABCD绕着点A逆时针旋转得到菱形AEFG,设∠EAB=α,且0°<α<90° 1.如图1,求证:△AGD≌△AEB 2.当α=60°时,在图②中画 边长为1的菱形ABCD中,角DAB=60 连接对角线AC 第N个菱形面积如图,边长为1的菱形ABCD中,∠DAB=60°,连结对角线AC,以AC为边作第一个菱形ACC1D1,使∠D1AC=60°,连结AC1,再以AC1为边作第二个菱形AC1C2D2,使∠D2A 如图所示,在边长为6的菱形ABCD中,∠DAB=60°,点E是AB的中点,点F是AC上的任意一点,求EF+BF的最小值.