lim(x→0)[(1+x)/(1-x)]^(1/x)=?,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:06:41
lim(x→0)[(1+x)/(1-x)]^(1/x)=?,
lim(x→0)[(1+x)/(1-x)]^(1/x)=?,
lim(x→0)[(1+x)/(1-x)]^(1/x)=?,
lim(x→0)[(1+x)/(1-x)]^(1/x)
=lim(x→0)[(1+2x/(1-x)]^[(1-x)/2x][2/(1-x)]
底数[(1+2x/(1-x)]^[(1-x)/2x]趋于e,指数[2/(1-x)]趋于2
极限=e^2
取对数
ln原式=lim(x→0)(ln(1+x)-ln(1-x))/x
=lim(x→0)(1/(1+x)+1/(1-x))/1 (洛必达法则)
=lim(x→0)2/(1-x^2)
=2
所以原式=e^2