函数y=sin(π/2+x)*(sinx+cosx)的最小值,求步骤

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:56:48

函数y=sin(π/2+x)*(sinx+cosx)的最小值,求步骤
函数y=sin(π/2+x)*(sinx+cosx)的最小值,求步骤

函数y=sin(π/2+x)*(sinx+cosx)的最小值,求步骤
y = sin(π/2+x)*(sinx+cosx)
= cosx *(sinx+cosx)
= sinxcosx+cos²x
= 1/2sin2x + 1/2(cos2x-1)
= 1/2(sin2x+cos2x) - 1/2
= √2/2(sin2xcosπ/4+cos2xsinπ/4) - 1/2
= √2/2sin(2x+π/4) - 1/2
sin(2x+π/4)最小值-1
∴ymin = -√2/2-1/2 = -(√2+1)/2