如图,在四边形ABCD中,AB=CD.E,F分别是BC,AD的中点,连接EF并延长,分别与BA,CD的延长线交与点M,N,则角BME=角CNE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:32:09

如图,在四边形ABCD中,AB=CD.E,F分别是BC,AD的中点,连接EF并延长,分别与BA,CD的延长线交与点M,N,则角BME=角CNE
如图,在四边形ABCD中,AB=CD.E,F分别是BC,AD的中点,连接EF并延长,分别与BA,CD的延长线交与点M,N,
则角BME=角CNE

如图,在四边形ABCD中,AB=CD.E,F分别是BC,AD的中点,连接EF并延长,分别与BA,CD的延长线交与点M,N,则角BME=角CNE
如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明).
(温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.)
问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论;
问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明.
(1)取AC中点P,连接PF,PE,
可知PE=AB/ 2 ,PE∥AB,
∴∠PEF=∠ANF,
同理PF=CD / 2 ,
PF∥CD,
∴∠PFE=∠CME,
又PE=PF,
∴∠PFE=∠PEF,
∴∠OMN=∠ONM,
∴△OMN为等腰三角形.
(2)判断出△AGD是直角三角形.
证明:如图连接BD,取BD的中点H,连接HF、HE,
∵F是AD的中点,
∴HF∥AB,HF=1/2AB,
同理,HE∥CD,HE=1/2CD,
∵AB=CD
∴HF=HE,
∵∠EFC=60°,
∴∠HEF=60°,
∴∠HEF=∠HFE=60°,
∴△EHF是等边三角形,
∴∠3=∠EFC=∠AFG=60°,
∴△AGF是等边三角形.
∵AF=FD,
∴GF=FD,
∴∠FGD=∠FDG=30°
∴∠AGD=90°
即△AGD是直角三角形.

如图在四边形ABCD中,AB‖CD(AB>CD)E,F分别是对角线AC,BD的中点求证EF=二分之一(AB-CD) 如图,在四边形ABCD中,AB‖CD,AE平分∠BAD交BC于点E,且AB=EB求证,四边形ABCD是平行四边形 如图在四边形ABCD中AB平行CD AE平分角BAD于点E且AB=EB求证:四边形ABCD是平行四边形 如图,在四边形ABCD中,AB//CD,AB=CD=BC,四边形ABCD是菱形吗 如图,四边形ABCD中,AB//BC,点E在边CD上,AE平分 如图,四边形ABCD中,AB=CD,M、N分别是AD、BC的中点,延长BA、NM、CD分别交于点E如图,在四边形ABCD中,AB=CD,M,N分别是AD,BC的中点,延长BA,NM,CD分别相交于点E,F,50[ 标签:四边形 abcd,abcd,相交 ] 如图,在四边 如图在四边形ABCD中AB╱╱CD,BE CE分别平分∠ABC与∠DCB,E在AD上.求证BC=AB+CD 如图,在梯形ABCD中,AB平行CD,BC=CD,AD垂直BD,E为AB的中点.求证:四边形BCDE是菱形 如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点.试说明四边形BCDE是菱形. 如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB的中点,试说明四边形BCDE是菱形 已知:如图,在梯形ABCD中,AB平行CD,BC=CD,AD垂直BD,E为AB中点,求四边形BCDE是菱形 如图,在四边形ABCD中,E、F分别是AB、CD的中点,EF=(AB+CD)的二分之一,求证:AD平行于BC 如图,在四边形ABCD中,ad=bc,E,F,G,H分别是AB,CD,AC,BD的中点.求证:四边形EGFH是菱形 已知,如图,在四边形ABCD中,AD=BC,点E,F,G,H,分别是AB,CD,AC,BD的中点,求证:四边形EGFH是菱形 已知,如图,在四边形ABCD中,AB=CD,E、F、G、H分别是BD、AC、AD、BC的中点,求证:四边形EHFG是菱形 已知,如图,在四边形ABCD中,AB=CD,E、F、G、H分别是BD、AC、AD、BC的中点.求证:求证:四边形EHFG是菱形. 已知:如图,在四边形ABCD中,AD=BC,点E,F,G,H分别是AB,CD,AC,BD的中点.求证:四边形EGFH是菱形 已知:如图,在四边形ABCD中,AD=BC,点E,F,G,H分别是AB,CD,AC,BD的中点,求证:四边形EGFH是菱形.