已知椭圆方程x2/a2+y2/b2=1的左右焦点F1、F2,点P(a,b)为动点,三角形F1PF2为等腰三角形,求椭圆的离心率试卷上的题目就是这样的,可为什么我拿1.PF1=PF2 2.PF2=F1F2 算出来都是e=1啊?正确的方法是怎样的?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:51:41
已知椭圆方程x2/a2+y2/b2=1的左右焦点F1、F2,点P(a,b)为动点,三角形F1PF2为等腰三角形,求椭圆的离心率试卷上的题目就是这样的,可为什么我拿1.PF1=PF2 2.PF2=F1F2 算出来都是e=1啊?正确的方法是怎样的?
已知椭圆方程x2/a2+y2/b2=1的左右焦点F1、F2,点P(a,b)为动点,三角形F1PF2为等腰三角形,求椭圆的离心率
试卷上的题目就是这样的,可为什么我拿1.PF1=PF2 2.PF2=F1F2 算出来都是e=1啊?正确的方法是怎样的?
已知椭圆方程x2/a2+y2/b2=1的左右焦点F1、F2,点P(a,b)为动点,三角形F1PF2为等腰三角形,求椭圆的离心率试卷上的题目就是这样的,可为什么我拿1.PF1=PF2 2.PF2=F1F2 算出来都是e=1啊?正确的方法是怎样的?
好吧,刚才想的有问题,重新试试:a>c>0,b>0,所以点P肯定在第一象限,且位于右焦点F2的右上方;
所以,三角形F1PF2肯定是一个钝角三角形,而且可以确定的是,肯定是PF2=F1F2,
所以PF2=2c,PF2^2=(a-c)^2+b^2=4c^2,把b^2=a^2-c^2
即:a^2-2ac+c^2+a^2-c^2=4c^2,整理得:2c^2+ac-a^2=0
同除a^2得:2e^2+e-1=0,十字相乘:(2e-1)(e+1)=0,得:e=1/2
如果不懂,请Hi我,
已知椭圆x2/a2+y2/b2=1,其离心率为根号3/2,则双曲线x2/a2-y2/b2=1的渐近线方程为
已知椭圆x2/a2+y2/b2的离心率为根号2/2,其焦点在圆x2+y2=1球椭圆方程
已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0) 双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作直已知椭圆C的方程为x2/a2+y2/b2=1(a>b>0)双曲线x2/a2-y2/b2=1的两条渐近线为l1,l2,过椭圆C的右焦点作F作
急已知双曲线x2/a2-y2/b2=1的离心率为根号6/2,椭圆x2/a2+y2/b2=1的离心率为
已知椭圆的方程为X2/A2+Y2/B2=1(a>b>0)求椭圆的离心率 焦点坐标 焦距
已知椭圆C:x2/a2+y2/b2=1(a>0,b>0)过点(1,2/3),且离心率为1/2.求椭圆的方程
已知椭圆C:x2/a2+y2/b2=1与椭圆x2/4+y2/8=1有相同的离心率,则椭圆C的方程可能是()
已知椭圆C1:x2 a2 + y2 b2 =1(a>b>0)椭圆C2
已知椭圆C:x2/a2+y2/b2=1与椭圆x2/4+y2/8=1有相同的离心率,则椭圆C的方程可能是()A、X2/8+Y2/4=m2(m不等于0)B、X2/16+Y2/64=1C、X2/8+Y2/2=1D、以上都不可能麻烦简单说明
已知椭圆x2/a2+y2/b2=1与椭圆x2/25+y2/16=1有相同的长轴椭圆x2/a2+y2/b2=1的短轴长与椭圆y2/21+x2/9=1的短轴长相等,则求a2和b2的值?
已知方程为x2+y2=9的园经过椭圆(x2/a2)+(y2/b2)=1(a>b>0)的两个焦点和两个顶点,则椭圆的长轴长等于
已知椭圆x2/a2+y2/b2=1与双曲线x2/12-y2/4=1有相同的焦点,且a+b=8,求椭圆的方程.
已知椭圆x2/a2+y2/b2=1的离心率为1/2,两焦点之间的距离为4,求园的标准方程,
已知直线l:y=2x+m(m>0)与圆O:x2+y2=4相切,且过椭圆:(y2/a2)+(x2/b2)=1(a>b>0)的两个顶点.求椭圆方程.
椭圆X2/a2+y2/b2=1在点(x0,y0)处的切线方程为xx0/a2+yy0/b2=1,为什么?
已知直线x+y-1=0经过椭圆x2/a2+y2/b2的顶点和焦点F 求此椭圆的标准方程
已知椭圆C:y2/a2+ x2/b2=1,经过点(1/2,根号3),一个焦点是F(0,-根号3)求椭圆方程
已知双曲线x2/a2-y2/b2=1的离心率为2,焦点与椭圆x2/25+y2/9=1相同,那么双曲线的焦点坐标为渐近线方程为