如图,在正方形ABCD中,点E,F分别在BC,CD上移动,但A到EF的距离AH始终保持与AB长相等,问在E,F移动过程中:(1)∠EAF的大小是否有变化?请说明理由.(2)△ECF的周长是否有变化?请说明理由.(1)∠E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:36:15
如图,在正方形ABCD中,点E,F分别在BC,CD上移动,但A到EF的距离AH始终保持与AB长相等,问在E,F移动过程中:(1)∠EAF的大小是否有变化?请说明理由.(2)△ECF的周长是否有变化?请说明理由.(1)∠E
如图,在正方形ABCD中,点E,F分别在BC,CD上移动,但A到EF的距离AH始终保持与AB长相等,
问在E,F移动过程中:
(1)∠EAF的大小是否有变化?请说明理由.
(2)△ECF的周长是否有变化?请说明理由.
(1)∠EAF的大小是否有变化?请说明理由。
(2)△ECF的周长是否有变化?请说明理由。
如图,在正方形ABCD中,点E,F分别在BC,CD上移动,但A到EF的距离AH始终保持与AB长相等,问在E,F移动过程中:(1)∠EAF的大小是否有变化?请说明理由.(2)△ECF的周长是否有变化?请说明理由.(1)∠E
证明:(1)∠EAF的大小没有变化.
根据题意,知
AB=AH,∠B=90°,
又∵AH⊥EF,
∴∠AHE=90°
∵AE=AE,
∴Rt△BAE≌Rt△HAE,
∴∠BAE=∠HAE,
同理,△HAF≌△DAF,
∴∠HAF=∠DAF,
∴∠EAF= ∠BAH = = ,
又∵∠BAD=90°,
∴∠EAF=45°,
∴∠EAF的大小没有变化.
(2)求证:△ECF的周长没有变化.
证明:C△EFC=EF+EC+FC,
由(1),得
BE=EH,HF=DF,
又∵BC=DC,EF=EH+HF,EC=BC-BE,FC=DC-DF,
∴C△EFC=BE+DF+BC-BE+BC-DF=2BC,
∴△ECF的周长没有变化.
解答本题的关键是利用正方形的性质和全等三角形的判定定理来判定三角形全等,再根据三角形全等的性质来解答问题.
证明:(1)∠EAF的大小没有变化.
根据题意,知
AB=AH,∠B=90°,
又∵AH⊥EF,
∴∠AHE=90°
∵AE=AE,
∴Rt△BAE≌Rt△HAE,
∴∠BAE=∠HAE,
同理,△HAF≌△DAF,
∴∠HAF=∠DAF,
∴∠EAF= ∠BAH = = ,
又∵∠BAD=90°,
∴...
全部展开
证明:(1)∠EAF的大小没有变化.
根据题意,知
AB=AH,∠B=90°,
又∵AH⊥EF,
∴∠AHE=90°
∵AE=AE,
∴Rt△BAE≌Rt△HAE,
∴∠BAE=∠HAE,
同理,△HAF≌△DAF,
∴∠HAF=∠DAF,
∴∠EAF= ∠BAH = = ,
又∵∠BAD=90°,
∴∠EAF=45°,
∴∠EAF的大小没有变化.
(2)求证:△ECF的周长没有变化.
证明:C△EFC=EF+EC+FC,
由(1),得
BE=EH,HF=DF,
又∵BC=DC,EF=EH+HF,EC=BC-BE,FC=DC-DF,
∴C△EFC=BE+DF+BC-BE+BC-DF=2BC,
∴△ECF的周长没有变化.
收起
没有变化,周长始终是正方形边长的两倍
RT△ABE和RT△AHE中:
AB=AH
AE=EA
∠ABE=∠AHE=90
HL定理知:RT△ABE≌RT△AHE
则BE=HE
同理知RT△ADF≌RT△AHF,有HF=DF
所以△CEF周长=CE+CF+EF
=CE+EF+HE+HF
=CE+EF+BE+DF
=...
全部展开
没有变化,周长始终是正方形边长的两倍
RT△ABE和RT△AHE中:
AB=AH
AE=EA
∠ABE=∠AHE=90
HL定理知:RT△ABE≌RT△AHE
则BE=HE
同理知RT△ADF≌RT△AHF,有HF=DF
所以△CEF周长=CE+CF+EF
=CE+EF+HE+HF
=CE+EF+BE+DF
=BC+CD
即是正方形边长两倍
收起
证明:(1)∠EAF的大小没有变化.
根据题意,知
AB=AH,∠B=90°,
又∵AH⊥EF,
∴∠AHE=90°
∵AE=AE,
∴Rt△BAE≌Rt△HAE,
∴∠BAE=∠HAE,
同理,△HAF≌△DAF,
∴∠HAF=∠DAF,
∴∠EAF= ∠BAH ,
又∵∠BAD=90°,
∴∠EAF...
全部展开
证明:(1)∠EAF的大小没有变化.
根据题意,知
AB=AH,∠B=90°,
又∵AH⊥EF,
∴∠AHE=90°
∵AE=AE,
∴Rt△BAE≌Rt△HAE,
∴∠BAE=∠HAE,
同理,△HAF≌△DAF,
∴∠HAF=∠DAF,
∴∠EAF= ∠BAH ,
又∵∠BAD=90°,
∴∠EAF=45°,
∴∠EAF的大小没有变化.
(2)求证:△ECF的周长没有变化.
证明:C△EFC=EF+EC+FC,
由(1),得
BE=EH,HF=DF,
又∵BC=DC,EF=EH+HF,EC=BC-BE,FC=DC-DF,
∴C△EFC=BE+DF+BC-BE+BC-DF=2BC,
∴△ECF的周长没有变化.
收起
(1)如图,∠EAF=45°,大小不变化,理由是: ∵ 四边形ABCD是 正方形,AH⊥EF,AB=AH,AE=AE, ∴ 直角△ABE≌ △直角△AEH(HL) ∴ ∠BAE= ∠EAH。 同理,∠DAF= ∠FAH, ∴∠EAF=∠EAH+∠HAF=∠EAB+∠DAF=90°/2= 45°。 (2)△ECF的周长不发生变化,理由是: 把直角△ABE绕点A逆时针方向旋转90°,使点B与点D重合,点E到点M处, 易证△AEF≌ △FAM, EF=FM=BE+FD, 即△ECF的周长= EC+CF+EF= BC+CD。