a、b、c∈正实数, a^2+b^2=c^2. 当n∈N,n>2时,请比较c^n与a^n+b^n的大小.谢谢
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:26:52
a、b、c∈正实数, a^2+b^2=c^2. 当n∈N,n>2时,请比较c^n与a^n+b^n的大小.谢谢
a、b、c∈正实数, a^2+b^2=c^2. 当n∈N,n>2时,请比较c^n与a^n+b^n的大小.
谢谢
a、b、c∈正实数, a^2+b^2=c^2. 当n∈N,n>2时,请比较c^n与a^n+b^n的大小.谢谢
a^n=(a^2)[a^(n-2)]
使用归纳法证明:
当n∈N,n>2时,请比较c^n>a^n+b^n
没悬赏分就不写详细过程了。
总之是先证明N=3时成立,然后假设N=k-1时成立推出N=k时也成立。(k>3)。然后归纳得到结论
a^2+b^2=c^2
a,b,c>0
a
b/c<1
(a/c)^2+(b/c)^2=1
(a^n+b^n)/c^n=(a/c)^n+(b/c)^n
a/c<1
b/c<1
n>2
所以
(a/c)^n<(a/c)^2
(b/c)^n<(b/c)^2
所以(a^n+b^n)/c^n=(a/c)^n+(b/c)^n<(b/c)^2+(a/c)^2=1
c^n>a^n+b^n