数列{an}的前n项和Sn=n²/(an+b),若a1=1/2,a2=5/61.求数列的前n项和Sn2 求数列的通项公式3 设bn=an/(n²+n-1),求数列{bn}的前n项和Tn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:33:39
数列{an}的前n项和Sn=n²/(an+b),若a1=1/2,a2=5/61.求数列的前n项和Sn2 求数列的通项公式3 设bn=an/(n²+n-1),求数列{bn}的前n项和Tn
数列{an}的前n项和Sn=n²/(an+b),若a1=1/2,a2=5/6
1.求数列的前n项和Sn
2 求数列的通项公式
3 设bn=an/(n²+n-1),求数列{bn}的前n项和Tn
数列{an}的前n项和Sn=n²/(an+b),若a1=1/2,a2=5/61.求数列的前n项和Sn2 求数列的通项公式3 设bn=an/(n²+n-1),求数列{bn}的前n项和Tn
(1)由S1=a1=1/2
S1=1/(a+b)=a1=1/2
S2=4/(2a+b)=a1+a2=1/2+5/6=4/3
{1/(a+b)=1/2
{4/(2a+b)=4/3
a=1 b=1
Sn=n²/(n+1)
(2)当n≥2
an=Sn-S(n-1)
an=n²/(n+1)-(n-1)²/n
an=(n²+n-1)/(n²+n)
当n=1时
a1=1/2也符合an=(n²+n-1)/(n²+n)
所以an的通项公式
an=(n²+n-1)/(n²+n)
(3)bn=an/(n²+n-1)=1/(n²+n)=1/n(n+1)
Tn=1/(1×2)+1/(2×3)+……+1/n(n+1)
Tn=1-1/2+1/2-1/3+……+1/n-1/(n+1)
Tn=1-1/(n+1)
Tn=n/(n+1)
1/(a+b)=1/2,b=2-a,4/(2a+b)=4/3,a=1,b=1,Sn=n²/(n+1)
an=Sn-S(n-1)=n²/(n+1)-(n-1)²/n=[n³-(n+1)(n-1)²]/n(n+1)=(n²+n-1)/n(n+1)
bn=1/n(n+1)