1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:45:01

1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256

1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
这个是分母加倍的加法,规律如下
1/2=1-1/2
1/4=1/2-1/4
1/8=1/4-1/8
.
1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
=1-1/2+1/2+1/4+1/4-1/8..+1/128-1/256
=1-1/256
=255/256

设x=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
则2x=1+1/2+1/4+1/8+1/16+1/32+1/64+1/128
2x-x=1-1/256
即x=255/256

1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256+1/256-1/256
=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/128-1/256
=1/2+1/4+1/8+1/16+1/32+1/64+1/64-1/256
=1/2+1/4+1/8+1/16+1/32+1/32-1/256
=1/2+1/4+1/8+1/16+1/16-1/256
=1-1/256
=255/256

128/256+64/256+32/256+8/256+4/256+2/256+1/256=239/256

上式=(128+64+32+16+8+4+2+1)/256=255/256

原式=1/2*(1-1/2^8)/(1-1/2)=255/256
这是等比数列的求和问题。
s即式子的和,a为式子的首项,q为公比,即后一项除以后一项,n为项数。
s=a*(1-q^n)/(1-q)

1/2可写成1—1/2,1/4可写成1/2—1/4以此类推,化简得原式等于1—1/256等于255/256

原式=1/2+(1/2)^2+(1/2)^3+(1/2)^4+(1/2)^5+(1/2)^6+(1/2)^7+(1/2)^8
=1/2×((1-(1/2)^8))/(1-1/2)
=1-(1/2)^8
=255/256